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A COMPUTER SOLUTION FOR THE DYNAMIC LOAD,

LUBRICANT FILM THICKNESS AND SURFACE

TEMPERATURES IN SPIRAL BEVEL GEARS

SUMMARY

A complete analysis of spiral bevel gear sets is presented.

The gear profile is described by the movements of the cutting tools.

The contact patterns of the rigid body gears are investigated. The

tooth dynamic force is studied by combining the effects of variable

teeth meshing stiffness, speed, damping and bearing stiffness. The

lubrication performance is also accomplished by including the effects

of the lubricant viscosity, ambient temperature and gear speed. A

set of numerical results is also presented.

I;_itECEDING_'IPAG'_ BLANK NOT FIL_=O
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CHAPTERI

INTRODUCTION

Spiral bevel gears, found in manymachine tools, automobile

differential gears,and aircraft gears, are important elements for power

transmissions. However, the basic mechanismswhich govern the major

failure modesof spiral bevel gears are not fully understood. Unlike

spur or helical gears, the complicated geometry of spiral bevel gears

makesthe problem considerably more difficult. In military applications

such as gear transmissions used in recent V/STOLaircraft, gears

are often designed under conditions very close to the failure limits

to gain a maximumpower density. A thorough understanding of spiral

bevel gears under critical operation is urgently needed to prevent

premature failure.

Basically, there are two classifications of gear

failure, one of which is structural failure, which includes flexure

fatigue, tooth breakage and case crushing, and the other .is the

lubrication related failure which includes wear, surface pitting and

scuffing.

Structural failures are usually related to the material properties

and improper geometrical design or unexpected overloading. While the relia-

bility of spiral bevel gears can be improvedby better material

selection and better geometrical design, it can also be enhancedby

a more accurate understanding of the dynamic loading betweena pair of



teeth as it travels through the contact.

Since the basic lubrication process in bevel gears is not clearly

understood, the lubrication related failures,particularly in surface

pitting and scuffing,are muchmore difficult to predict. Current methods

used in industries to predict lubrication related failures are not

satisfactory because they are mainly empirical. It has been shownin

failure tests of gears and rollers that the surface pitting and

scuffing are affected critically by lubricant film thickness and surface

temperature. A tool that can predict film thickness and surface tempera-

ture in the gear teeth contact is welcome in design against pitting and

scuffing.

This paper presents an analysis to predict the dynamic loads

betweengear teeth contact which has a contact ratio greater than unity

and a variable stiffness along the path of contact. In addition, an

analysis is presented to predict the minimumfilm thickness and

the surface temperature under given dynamic loads. It is based on the

most recent theories on film thickness and traction in elastohydrodynamic

contacts.



CHAPTER II

TOOTH PROFILE AND CONTACT PATTERN

OF SPIRAL BEVEL GEARS

2.1 Introduction

Recent developments in the finite element method (F_) and

elastohydrodynamic lubrication (EHD) have stimulated a growing interest

in the basic research of the dynamics and lubrication process in spur

and helical gears (1-6). This interest is now gradually being extended

to spiral bevel gears for which there seems to be little known about

the tooth load sharing and lubrication characteristics, especially at

high speeds and heavy loads.

Unlike involute spur and helical gears whose surface geometry

is relatively simple and readily derivable, the surface geometry of

spiral bevel gears is extremely complex owing to its three dimensional

characteristics. For studying the performance and failure of spiral

bevel gears, it is essential first to find an efficient method to

describe the surface geometry of a pair of mating gears in terms of the

tooth form and the tooth contact patterns. Although this method is

currently available at Gleason Gear Works (7-11), it is not fully suffi-

cient for studying the dynamic load and lubrication analysis. It is the

intent of this research to extend the existing surface geometry analysis,

known as the Tooth Contact Analysis (TCA), to generate additional

quantities needed for the lubrication and dynamic analysis.
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The formulae for obtaining the coordinates of tooth surfaces

based on the Gleason generating systemare derived in Section 2.2. The

position of each point on the surface is described in cylindrical

coordinates in terms of its position along the rotational axis of the

pinion or gear, its radial distance from the axis, and its angular posi-

tion about the axis from an arbitrarily chosen reference plane. The

equations are solved by an iterative method.

The contact points of a pair of mating gears and pinions for a

running position are determined in Section 2.3. The sliding velocity

and the direction of the unit normal vector at each contact point can

be obtained. In addition, the principal radii of the mating surfaces which

characterize the geometry at the contact point can be computed.

Somenumerical results of a typical case are shownin Section

2.4. Theeffect of different running positions on contact patterns

are studied. Finite element grids of a typical spiral bevel tooth

profile are presented.



2.2 Determination of Tooth Surfaces for

Generated Spiral Bevel Gears

In Tooth Contact Analysis (TCA) the gear and pinion tooth

surfaces are mathematically described by the machine settings and the

cutter specifications used in making the gears. Before proceeding to

describe TCA, it is first desirable to review some basic concepts of

bevel gearing. The principal reference planes of a spiral bevel gearing

system are shown in Fig. 2-1. The axial plane of a single gear is the

plane containing the gear axis and a given point on the tooth surface.

The pitch plane is the plane perpendicular to the axial plane and tan-

gent to the pitch circle. The transverse plane is perpendicular to the

axial plane and the pitch plane. Figure 2-2 and Figure 2-3 show,

respectively, the sectional views in the axial and transverse plane of

a bevel and pinion system, and illustrate the most common terms used in

bevel gears.

In order to understand the formulae derived in this chapter, a

brief explanation of the cutting process is in order. Figure 2-4

illustrates the Gleason cutting process -- i) the wheel cutter used in

cutting spiral gears, 2) the cradle which positions the cutter in

reference to the work and carries it through its generating motion, and

3) the blank into which the teeth are cut. The dresse_ which is used

to restore the cutting action of the wheel by fracturing and tearing

away the dull grains to expose fresh cutting edges or clear away the

imbedded material, is shown in Figure 2-5. Before the teeth are cut,

the wheel cutter is predressed to shape the cutter. The relation

between rotation of the cradle and rotation of the work is controlled



by the rotation of a camwhich rotates about a fixed center.

The formulae derived here are based on the kinematics of two

contacting bodies. There is no relative velocity in the normal direction

at the cutting point and the teeth are assumedto be rigid. The

formulae are written in vector notation. Most of these vectors are

self-explanatory except for the following two terms:

A(g,e) R, a rotation of vector A through an angle e about the

unit vector g.

(_,_,_)T, a 3 x 3 matrix to transform a vector into a new

coordinate system having the base vectors indicated

in the parentheses. Since the right hand cartesian

coordinate is used, it is only necessary to indicate

two base vectors.

2.2.1 Basic Formulae

To describe the manufacturing process, one needs to know the

relationship among the rotating elements, and the relative movement

between the work and these elements.

2.2.2 Data Defining the Gear Tooth Surface

The gear tooth surfaces are controlled by the machine settings.

The symbols of data required are listed in Table I. Sample data are

given in Appendix A. These values are usually tabulated on a Gleason

Gear Engineering Standard form.

A spiral bevel gear and pinion are always of opposite hand. The

formulae considered here apply to a set consisting of a left-hand pinion sho_



TABLEI

SYMBOLSOFDATAFORMACHINESETTING

Gear Pinion

Concave Convex

Numberof teeth

Face width

Shaft angle

Outer cone distance

Addendum

Dedendum

Pitch angle

•Face angle

Root angle

Spiral angle

Nominal wheel diameter

Machinecenter to back

Sliding base

Blank offset

Camsetting

Eccentric angle

Cradle angle

Camguide angle

Standard camsetting

Campitch radius

Index interval

N

a
g

b
g

r

r o

F
r

X
g

xbg
E

mg

T
g

gg

qg

g

T
gO

flu
g

n.
lg

n

F

Ao

a
P

b
P

T

_0

T
r

q_t_

D

X
P

Xbp

E
mp

T
P

Bp

%

P

T
pO

flu
P

nip

X
P

xbp
E
mp

T
P

13p

qp

P

T
pO

flu
P

n.
lp



TABLE I (continued)

Gear Pinion

Concave Convex

Dresser block angle

Outside pressure angle

Side dresser radial

Outside dresser arm length

Outside diamond setting

Inside dresser arm length

Inside diamond setting

Side dresser axial

Side dresser offset

_dg

rdg

Ldog

Xdog

Ldig

Xdig

Zdg

Edg

z_d

_dp

rdp

Ldop

Xdop

Ldip

Xdip

Zdp

Edp

_dp

rdp

Ldop

Xdop

Ldip

Xdip

Zdp

Edp



in Figure 2-6 and right-hand gear shownin Figure 2-7. The drive side

is assumedto bethe concave side of the pinion running with the convex

side of the gear. The opposite combination is the coast side. Since

the gear tooth data define the side under consideration, these general

formulae apply to either the drive side or the coast side.

2.2.3 Mechanism of Cam

The relative rotation of the work and cradle is controlled by

the index head and cam. The index head is used to transfer accurately

the rotation ratio between the cam and workpiece. By describing the

motion of the cam with a specific index head setting, one can obtain

the rotations of the work and cradle, and their angular speed ratio.

The follower of the heart-shaped cam is fixed in the cradle, and

the cam rotation center is fixed. Figure 2-8 shows the position for

a standard cam setting. As the cam rotates about its own rotation

center, the fixed follower forces the cradle to rotate about its center.

The required rotation of the work is obtained by using the proper

indexing. The relative motion can be readily changed by using a

different cam geometry, cam setting, cam guide angle and index interval.

The symbols used in the motion formulae are:

E

An u

cam rotation

work rotation

cradle rotation

cam guide angle

change in cam setting

nu cam pitch radius



I0

T

T
o

cam setting

standard cam setting

For a standard heart-shaped cam, the mechanism of motion of the

cam and cradle at center of roll can be thought of as a pair of internal

gears which has a pitch radius nu for the pinion and DC + nu for the

gear (see Figure 2-9). If the cam rotates an angle eo, the cradle will

rotate an angl& nu/(n u + DC) times _o"

The change in cam setting An u is defined as the actual cam

setting T minus the standard cam setting T (see Figure 2-i0). Theo

dashed lines are for the standard cam setting for a rotation e . For a
o

change in Anu, the following relations are derived.

n

= u eo (2.1)
_o DC + nu e °

An

u sin(e - _o ) (2.2)sin _ =. sin _o +-_- o

E:= e + _ - _o (2.3)o

where # and e are the actual rotations for the current setting.

A center line of the follower is parallel to and is in the middle

of the follower surfaces. The cam guide angle is defined as the angle

between this center line and the llne from the cradle center to the

cam rotation center before the cam rotates (see Figure 2-11a). Because

the follower is fixed in the cradle, the distance from the cradle center
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to the center line of the follower is constant and is always equal to DC

sin _.

Figure 2-11b shows the relative positions with a cam guide angle.

Using c as the standard cam rotation angle, one obtains
O

n
u (2.4)

_0 = DC +n %
u

sin _22 = sin O;0 + sin
(2.5)

_=_'2-a
(2.6)

c2 = CO + _2 - _0 (2.7)

e = g2 - a
(2.8)

If both the cam setting and the cam guide angle are changed, one

can find the following relations based on the geometry shown in Fig. 2-12

for a standard cam rotation _ :
O

_U

= C0_0 DC + nu

An

sin _2 = sin _0 + sin _+_sin(% - _0 )

e2 = eO + _2 - _2

e= e2-CL

(2.9)

(2.10)

[2.11)

(2.12)

(2.13)
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n.

= l _ (2.14)
n

The ratio between the cradle and the work rotation becomes

d__ n NM

dl n I DM
(2.15)

where

NM = nu cos _0 + Anu c°S(go - _0 ) (2.16)

DM = NM+ DC cos _2 (2.17)

These ratios of the rotational velocity and the rotation of the work and the

cradle are necessary for computing the velocity and the normal direction

at the contact point. Their derivations are shown in Appendix B.

2.2.4 Basic Machine Set-up and Vector

Coordinate System

The cradle settings in the spiral bevel gear cutting machines

of the Gleason Works are shown in Fig. 2-13. The settings are fixed during th,

cutting process. From this figure, the following relations are obtained.

B
s = 16 sin -_ (2.18)
p 2

B

qpo = _2 - Qp + 360° (2.19)

B

s = 16 sin -_
g 2

(2.20)

qgo -- Qg - _g2 (2.21)
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Vectors in these formulae have been taken with respect to a

set of right-hand rectangular cartesian coordinates, x, y, z fixed in

the machine plane viewed from the front of the cutter toward the gear

as shownin Fig. 2-14.

In order to be consistent with the vector formulae, the follow-

ing matrix for unit vectors, d, e, and c is used.

d = (i, O, O)

e = (0, i, 0) (2.22)

c = (0, 0, i)

2.2.5 Point on the Gear

In cutting the gear, the moving parts include the rotating work,

cradle, wheel cutter, cam, and dresser. The work rotation, cradle

rotation and cam rotation are related to each other. It is desirable

to choose cam rotation as the independent variable. Thus, there are

only three independent rotations which define a specific point on the

gear tooth surface, i.e. the cam, dresser, and wheel cutter.

The procedure to determine a point on the gear tooth surface is

to choose arbitrary values for the cam rotation and wheel cutter

rotation, then find a value of dresser rotation such that the kinematic

requirement of contact is satisfied, i.e., the relative velocity at the

cutting point is perpendicular to the normal of the point being cut in

the gear tooth.

Symbols shown in Fig. 2-1_for all position vectors are
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defined as:

A :

S •

vector from the machine center to the point on the surface

vector from the machine center to the intersection of plane

containing the cutter tips and the wheel cutter axis.

vector from the crossing point to the point on the surface.

B : vector from wheel center to the point on the surface.

r :

m

n :

vector from the intersection of plane containing the cutter tips

and the wheel cutter axis to cutter tips.

unit normal vector to the cutter blade.

m

t :

g -

p :

unit vector along the direction of dressing diamond movement.

unit vector along the gear axis.

unit vector along the pinion axis.

The initial position of these vectors when qg = O, 8g

g -- (-cos F r, O, -sin rr)

= 0 are

-Ygo -- -Ydg _

gS--° = Sg

= (0 cos ¢ sin _ )
ng o , g, g

tg ° = (0, sin Cg, -cos Cg)

Because the convex side of the gear tooth is formed by an inside

blade of the cutter, by using the sign convention given below, the same
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formulae (used in computer programs) can be used for both sides:

Drive Side Coast Side

#g = Zcdg - #dg _g = - _dg

Xdg= Xdig Xdg = - Xdog

Ldg = Ldig Ldg = Ldog

Reasonable initial values of cam rotation e0g (standard cam

setting) and wheel rotation 8 are
g

Cog = o (2.z3)

eg = qgo - _M (2.24)

' from cam formulae to obtain
where _M is the spiral angle, using COg

_g,lg and ratio of cradle rotation to work rotation. The new position

vectors become

= + Sgqg qg0

_g = _g0([, qg)R

rg = _go(_, qg-Sg)

tlg = tgO(C, qg-Sg) R
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nlg = _go(7' qg-eg)R

dlg = dg(C, qg-eg)R

Bg0 = rg - (0.2 - adg) c + Xdgnlg
i

(2.0 - Edg) dig

(2.25)

Ag0 = Sg + Bg0

Rg0 = Xg g- Emg e- _g c + Ag0

whe re
Bg0

AgO

Rg0

: vector from wheel center to dresser center.

: vector from machine center to dresser center.

: vector from crossing point tO dresser center.

After setting certain values for the two independent variables

e0g and eg, one can determine the dresser angle edg that satisfies the

kinematic requirement of contact between tooth surface and cutter.

To find this dresser angle 8dg , an initial value (Sdg = 0) is first

assumed. From Fig. 2-14, the new position vectors are

d2g = dlg(nlg' edg)R

t--2G= t--ig(n--Ig,Odg )R

Ag= Ag0 + Ldgd--2g (2.26)

Rg --Rg0 + Ldgd2g
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B =B +
g gO Ldgd2g

The normal of the cutter blade at this instant (given COg' @egvalues) is

n = { c x B ) x t2g }unit (2.27)g g

The velocity of the cutter relative to the work at the point being cut

is

V = d_ c x A + g x R (2.28)
g g g

g
The product n • _ is checked to see whether or not it is zero; if not,

g

the secant method is used to iterate 6dg until ng • Vg = 0 is satisfied

for the prescribed values of COgand e .g
The tooth surface can be described completely with the formulae

and e independently.derived so far by varying the values of COg g

2.2.6 Point on the Pinion

The procedure to find the pinion tooth surface is exactly the same as

that forthe gear tooth surface, except for some initial vectors which

are different. From Fig. 2-15, the mathematical forms are described

briefly as follows:

Drive Side Coast Side

_p = _dp - E_dp

Xdp = Xdo p Xdp = = Xdi p

Ldp = Ldo p Ldp = Ldi p
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The initial position vectors are:

p = (-cos Yr' 0, -sin Yr)

=S d
SpO P

_. e

rp0 rdp

-- = (0, -cos _p, -sin #p)
np0

= (0, -sin #p, cos _p)
tp0

and ratio of

= -- p

Assume E0p = 0, 8p qp0 _M; one can calculate X ,_p

cradle rotation to work rotation by cam formulae described earlier.

qp = qp0 - _P

_ K

-- =-_ (c, -qp)
Sp p0

_ _-_p0(_, 8P _qp)R
rp

Elp --Yp0(_'ep -qp)P"

_ = np0(_, %P _qp)R
nlp

dip P

-- -- - (2.0- Edp) dip
= r - (0.2 - Zdp) c - Xdp nlp

po P

(2.297

(z.Bo)

Ap0 = SP + BP 0

_p0--_pp + Gp e - Xbp
c+A
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Assumea value of dresser angle 8dp

d2p = d--ip(n--ip'0dp) R

=A + --
p p0 Ldp d2p

(2.31)

Bp = B--p0+ Ldp d2p

V = cxA +pxR

P p P P

edp = 0.change until V • np

The tooth surface of pinion is thus determined by changing the

values of e0p and 8 independently.P
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2.3 Tooth Contact Behavior and Motion Graph

The only tooth curvature of involute gears with an infinite

lengthwise radius of curvature is the tooth profile curvature, so the

instantaneous tooth contact pattern will be a straight line extending

from one end of the tooth to the other. If elastic deformation is

included, the contact pattern will be an elongated rectangle, from one

end of the tooth to the other. If the teeth are crowned, lengthwise

curvature is introduced. This results in a point contact for rigid

teeth, or an elliptical contact for elastically deformed teeth.

Theoretical conjugate bevel gear teeth can be manufactured, but

they are sensitive to shaft misalignment and housing deformation. Due to

this, bevel gears are produced with a lengthwise and a pro£ilewise mis-

match. Therefore, the instantaneous tooth contact pattern will be a

theoretical point for rigid teeth or an ellipse when elastic deformation

is included.

By choosing the proper amount of mismatch in both directions for

a particular case, edge contact and excessive contact pressure can be

avoided in the presence of misalignment due to shaft and housing

deformations.

The purpose of the motion graph is to describe the nature of the

motion transmitted and the effects of contact between adjacent pairs of

teeth on the tooth contact pattern.

The gear contact problem is essentially a Hertzian contact prob-

lem, with the pressure distribution in the Hertzian ellipse a main concern

in EHD. The shape of the Hertzian ellipse can be readily determined



21

from the principal radii which can be computedanalytically from the

gear teeth geometry.

2.3.1 Matchin_ a Contact Point

A method =o find the contact point by machine setting and running

position is derived in this section.

In addition to the rectangular cartesian coordinate used in

Chapter II, a point on the tooth surface with respect to the tooth axis

and the crossing point can be specified in the axial plane by:

L : the distance along the tooth axis from the crossing point.

R : the radius from the tooth axis.

The primary effect of misalignment is to shift the tooth contact

to the boundaries of the tooth surface, resulting in edge contact and

extreme loading conditions. Figure 2-16 shows a pair of

spiral bevel gears; the following errors in relative running position of

the pinion with respect to gear are discussed:

E
r

: running shaft angle.
r

X : pinion apex withdraw_hich is the linear displacement in
pr

the H-directlon (along the pinion axis).

X : gear apex withdraw-which is the linear displacement in the
gr

Z-direction (along the gear axis).

: offset-which is the linear displacement in the V-direction.
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Consider a point on the gear tooth surface obtained by assumed

values of e and e as described in Section 2.2, in order to match
Og g

the gear axis from its manufacturing position to a proper running

position relative to the pinion axis. Supposeone lets the manufacturing

axis of the pinion coincide with the pinion axis at running position.

Then the gear axis at running position is as shownin Figure 2-17, and

the newposition vectors relative to the new gear axis are:

g g

AE=E +F +T
r r r

_gl l Rg_

(_, _)R (_, Az)R

(2.32)

_2.33)

where _ is the desired rotation angle of the gear from a specified
g

reference. In the computer program, _ is set at zero to find the first
g

contact point, and then is increased to obtain the successive contact

points.

Assuming that a point P on the gear surface obtained by a pair
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and e is a contact point under running conditions, theof values COg g
position vector for this point expressed in the pinion axis can be

obtained by placing the gear in running position relative to the pinion

as shownin Figure 2-18

(2.34)

Onecan define this contact point P in the pinion without con-

sidering its angular position by

Lpl =-R%I.

I%= xpl
Rpl i

(2.35)

In the manufacturing procedure, there is a set of particular

and 8 to produce a point in the pinion with the same
values of e0p P

and R as those of Lpl and Rpl.values of Lp P

e
P

The mathematical way to find these particular values of ¢0p and

is described as follows.

and 8 and using the method described
Assuming arbitrarily £0p P

in section 2.2, one can get R which is the vector from crossing point
P

to the contact point Q between cutter blade and work. The vector R
P

can be specified by

m

L =-R • p
P P

R = x Plp IRp

(2.36)
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and e simultaneously until L = L and R = R that is,Iterate e0p P p pl p pl'

the samedistance around the pinion axis from crossing point is obtained

for point Qand point P.

Then rotate the pinion axis to makepoint Q coincide with the

contact point P; the rotation angle required, Anp, is shownin Figure

2-19.

psinRlx )_z (2.37)
P

Point P is obtained under the assumption that arbitrary values

and e were made. Under a given tooth profile and running posi-
of e0g g

tion, not every point in the tooth could be a common contact point. A

common contact point must have the same normal direction for both pinion

and gear.

Assuming that a point P is the common contact point, the normal

and eg is ngl, on thedirection at this point on the gear for C0g

pinion it is

np(p,Anp) Rnpl =
(2.38)

where n is obtained at point Q. n and n are compared to see if
p gl pl

they agree to within a specified error. If not, the secant method is

used to to change _ and e simultaneously to find another contact point
og g

until the two normal directions agree. This procedure yields a point of

contact between gear and pinion.
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In fully matched gears, the constant velocity ratio is main-

tained. In single mismatchcase (lengthwise mismatch) the theoretical

contact point is a point of the original surface, so the uniform velocity

will be maintained. There is only one theoretical contact point in

combinedmismatch, the point of the original surface; therefore, the

velocity ratio will not remain constant, and there is a theoretical

instantaneous velocity changeat each changeover.

The motion graph showsthe error in angular displacement of the driven

memberagainst rotation of the driver. It is assumedthroughout that

the pinion is the driving memberand that it is rotating at a constant

velocity.

2.3.2 Condition of Contact

The surface topography of spiral bevel gears cannot be readily

expressed mathematically by an analytical function. However, one can

use second-order surface approximations to describe the surface around a

point of contact. By this approximation the principal radii and relative

surface velocity at the contact point can be analytically determined.

Approximating a surface to the second order gives

2 2
z = 0.5 a x + b x y + 0.5 c y (2.39)

The numeric coefficients were chosen so that

B2z

8x 2
curvature in x-direction
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a2z

axay
twisting (2.40)

a2z
C ----"

2
ay

curvature in y-direction

ra )express this surface equation in compact form (s) -- _b

Except for the tooth breakage, the tooth failure modes are

mainly due to local contact pressure which causes surface pitting or

scoring at high sliding velocities. Therefore, to develop reliable

formulae for gear design it is necessary to have knowledge of contact

pressure and surface velocity on the gear tooth.

2.3.2.1 Surface Coefficients

Figure 1-20 shows the surface at the point of contact for the gear.

The tangent plane coordinate system is chosen in such a way that the

plane containing the normal direction vector of contact point (ng) and

_he vector c of wheel axis is the yz plane of the tangent plane coordinate

system as shown. Let t coincide with y axis and n with z axis, so
g g

the vector t x n is in the direction of the x-axis.
g g

In this chosen tangent plane coordinate system, there is no

twisting for the surface of the generator which is the wheel surface

around the point of contact (bs_g = 0) and the curvature in the x-axis

direction of this generator surface (asmg) can be derived based on the

geometry shown in Figure 2-20.

o

sin _mg-- ng • c (2.41)
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rng -- IBg x 71 .ec ,_g
(2.42)

1

s_g r
ng

(2.43)

2-21.

The curvature in the y-axis direction (Csmg) is shown in Fig.

_g = _ tan - _ secg _g _g

sin ig = nlg (t2g x ng)
(2.44)

= • x ng)sin _ g t2g (_g

x = Ldg sin _ g O + ---
(2.45)

y = Ldg cos = g 0 + ---
(2.46)

ig)O 2 1A ffi 0.5 Ldg(Sin - 0"5x2 rng

L 2

0.5 0 2 - _-_sin2 _mg]= [-Ldg sin ig r
ng

(2.47)

but
2 1

Affi0.5y 0
_g

hence
i i sin i i tan 2

Ldg mgP _g cos2_g rng

(2.48)
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i
c = -- (2.49)

smg Pug

where Pug is the radius of curvature in y-axls direction.

In the actual running position, the z-axis of the tangent plane

is ngI and the y-axis is

t--gt = tg(g,_)R (e, &7) R (2.50)

For the pinion, the surface of the generator around the point

of contact is shown in Fig. 2-22, and surface coefficients a b
sup _ sup

and c can then be obtained:
sup

sin _Sup = -n • c (2.51)P

t = n tan _mp + c sec _up (2.52)P P

sin i = -- • -- X np) (2.53)p nlp (t2p

sin _up = t2p (tp x np) (2.54)

rnp = IB-p x c I sec _up
(2.55)

sin i
1 1 p 1 2

- --- tan _

Pmp Ldp cos2 rnp up
up

(2.56)
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i
a _

sup r
np

b --0 (2.57)
s_p

i
C

sup 0mp

In the real running position, the tangent plane coordinate

in the z-axis direction is

npl =ng I (2.58)

and in the y-axis direction is

t--pt=. tp(p, Anp) R (2.59)

One uses the vectorial velocity and acceleration of a known

point on the wheel and angular velocity vector of the wheel about that

point to describe the movement of the generator. This point is chosen as

a point of contact at a given instant. The motion parameters are :

m

V : linear velocity vector.

a • linear acceleration vector.

m : angular velocity vector.
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The aboveare relative motion vectors denoting the motion of a moving

generator relative to a generatee.

The values of these motion parameters can be computedfor the

gear as follows (see Fig. 2-23 for direction of vectors):

[-d-_ Id2[_ "]
d_ , _ =

_cg = g cg g
(2.60)

-- c + g (2.61)
g cg

E ---R - A (2.62)
g g g

- = - Eg) (_°cg ....ag g x ('g x + g x c + acg c) x Ag (2.64)

w m

+ m x (m x A ) (2.64)
g g g

Transforming these vectors to tangent plane coordinates:

m

mtg = rag(-' -tg' _g)T

g

-- -- -- r

atG + aG(- , _g, ng)
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Similarly, for the pinion, one obtains

=I_] , _cp [d2_]
_cp P = _dl2Jp

(2.66)

= _ c + p (2.67)
p cp

E = R - A (2.68)
P P P

V --p x E + _ x A (2.69)
P P P P

ap = p x (p x Ep) + (_cp p x c + ecp c) x Ap

+ _ x (_ x A ) (2.70)
P P P

Transforming to the tangent plane coordinate system,

.... )TV = V (-, t , n (2.71)
tp p p p

a =a (-, t , n) T
tp p p p

The problem is, then, to determine the three components of the

difference surface matrix (Aa, Ab, _¢) in terms of the given surface

components and the motion parameters. From 2.12, the following relations are

obtained for the gear (subscripts x,y,z denote the component of a vector):
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.tan
sg

+
tgy asm_ Vtgx

_tgx - Csmg Vtgy

(2.72)

a +V co -V
tgz tgx t_y t_y

Vg _tgx - Cs_g Vtgy

t_x (2.73)

- c V
tKY s_g tKY

Ac =

g v + Vtgy - Vtg x tan _sgg

(2.74)

Ab ffi- Ac tan
g g sg

(2.75)

Aa ffi- Ab tan
g g sg

(2.76)

The coefficients of the surface of the gear around the contact point are:

a ffia + Aa
sg s_g g

b = Ab
sg g

(2.77)

C ffi C +AC

sg s_g g

for the pinion:

tan
sp

= _tpy + as_p Vtpx

_tpx - Cs_p Vtpy

(2.78)
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a_D Z + Vtpx _tpy - Vv = _ tpy _tpx
p _ -c V

tpx sup tpy

(2.79)

- c V

ACp = tpx smp tpyv + V - V tan
p tpy tpx sp

Abp = -Ac tan _ (2.80)p sp

Aa = -Ab tan
p p sp

The coefficients of the surface of the pinion in the pinion tangent plane

coordinate system are

= a + Aapasp sup

b =Ab (2.81)
sp P

C = C +Ac

sp sup p

It is necessary to rotate the pinion tangent plane coordinate system to

coincide with the gear tangent plane coordinate system in order to express

The anglethe coefficients of both surfaces in the same coordinate system.

required for rotation is _ which can be found from

sin A = t--pt• (_gt x _gl )
(2.82)

and then to transform the coefficients of the pinion surface into this

coordinate system,
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a
spg

2
= a cos A + 2 b cos A sin A + c

sp sp sp
sin 2 A

bspg = (Csp - asp) cos A sin A + bsp(COS 2 A - sin 2 4) (2.83)

c
spg

2
= c cos A - 2 b cos A sin A + a

sp sp sp

2
sin A

2.3.2.2 Geometric Contact Ellipse

Using a value of 0.00025" for the separation at the extremities

of the contact and the surface curvatures of each member at the point of

contact, the size and direction of the contact ellipse are determined

a_ (Fig. 2-24).

Aa=a -a
spg sg

Ab = b - b (2.84)
spg sg

Ac = Cspg- Csg

2Ab
tan 2g = Aa - Ac

The two values of g are the principal directions. Assuming that g2 is in

first or fourth quadrant, the curvatures in the gl and g2 directions are:
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i 2 2
-- = Aa cos gl + 2 Ab cos gl sin gl + Ac sin
Pl

! 2
cos g2 + 2 Ab cos g2 sin g2 + _c sin 26a

01

gl

g2

(2.85)

Pl and 02 are the principal radii of the difference surface of gear and

pinion surface, the lengths of the semi-axes of the contact ellipse in the

tangent plane are:

II ffi

12 ffi

!
0.0005

i

Pl

.0005 O2

i

O2

(2.86)

2.3.2.3 Velocity of Contact Point

Consider that the gear surface is stationary. During a small unit

time, the contact point on pinion moves from P to P' with velocity V s

due to rotation of the pinion. During this same time interval, the

point of contact moves on the pinion surface to P" with a velocity v

(Fig. 2-25), the velocity of contact point is the sum of these two

parts.

u = V + v (2.87)
S
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The pinion point velocity relative to the gear for unit pinion

rotational velocity is

Vsl = m.(R x g) + (R x p) (2.88)l gl pl

Transforming this vector into the common tangent plane

(2.89)

The angular velocity of the pinion body relative to the gear is

ml ffi-p - mi g (2.90)

Transforming this vector into the tangent plane,

ffi (-, tg t,
(2.91)

The surface coefficients of gear and pinion in this tangent plane are

spg spg/

(2.92)

Since p" is to be a point of contact, the rate of change of

the normals of the gear surface and the pinion must be the same:
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-_-=- for the gear

V(Sp - -=- )+_xn for the pinion

where _ x n is due to £he rotation of the pinion surface, and -V(Sp) is due

to curvature of pinion surface. Hence,

-uCsg) ----(_ - %) (Sp) + _ x n

u[(s ) - (s)] =_xS+V (s)
g p s p

(2.93)

u(ns) --¥xS+Vs(S )
P

= [¥ x _ + V-s(S)] (ns)-I
P
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2.4 Results and Discussion

One typical set of spiral gears currently being tested at NASA

Lewis Research Center was used to illustrate the numerical calculations.

The machine settings, which are provided by Gleason Works, are shown in

Appendix A. The points on the tooth surface were obtained by procedures

described in Section 2.2. The contact condition was determined by

the method shown in Section 2.3. A series of solutions were obtained

to simulate the spiral bevel gears subjected to a range of operating

conditions, and results are presented here. In order to obtain a

unified view, all the curves are plotted in the axial plane.

2.4.1 Tooth Profile

The methods in Section 2.2, which use actual cutting motions

of the gear cutting tools, result in an exact description of the tooth-

forms as functions of spiral angle, blade-edge radius, etc.

A typical tooth profile for the gear shown in Fig. 2-26 was

plotted in Fig. 2-27. For the purpose of applying FEM in gear design,

a typical finite element model for a single gear tooth was shown in

Fig. 2-28.

2.4.2 Contact Pattern

The spiral bevel gears are relieved both profilewise and length-

wise, so that there is only a single contact point in the center of the tooth.

This combined mismatch permits the gear pair to tolerate displacements

under load and assembly errors. Theoretical point contact is, of course,

only an imaginary concept. Under even light loads, tooth surfaces
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compressand deflect to cause surface contact. This surface contact

area is roughly elliptical. The sumof those elliptical contact areas

along the path of contact is called "Tooth Bearing." Correctly made

teeth will showa tooth bearing centrally located on the tooth surface,

whenthe gears are in their standard relative running positionS. The

amount of lengthwise mismatch is readily observed by the length of the

tooth bearing. Profile mismatch is not observed as readily owing to

the fact that the tooth height is relatively small; nevertheless, the

existence of profile mismatch is evidenced by the lack of any heavy

concentration of bearing at the tips of the teeth.

The results illustrated here were obtained by analyzing the

effects of running position errors on the path of contact. The errors

discussed here include pinion apex withdraw (Xpr), gear apexwithdraw

(Xgr) , running shaft angle (Er) and running offset (Er). Their effects

are calculated by changing the value of _ single term while keeping the

others unchanged, and these results are shownfrom Fig. 2-29 to Fig.

2-33. The path of contact movesto the toe as the pinion apex withdraw

increases and movesto the heel as it decreases. The shape of the path of

contact remains the same,but is inclined moreas it approaches both

sides. The gear apex withdraw will produce the sameeffect, but in the

opposite direction. As Xgr increases, the path of contact movesto the

heel, and the opposite occurs as Xgr decreases. Both of these

have as their chief effect a pressure angle error; the tooth contact

will movetoward the tooth tips on the gear tooth and toward the tooth

flanks on the pinion. Whenthe shaft angle becomeslarger, the contact on

both the gear and the pinion shifts to the toe. At the sametime, the contact

movestoward the tooth tips. The contact goes the opposite way when the
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shaft angle decreases. This effect is expected. The principal effect

of the offset is to tilt the tooth in its mating slot, so that the con-

tact shifts to the toe on one side and to the heel on the other side.

Usually, the running position errors are introduced simul-

taneously; the results on the drive side are investigated for the sliding

velocity and radii of the difference surface at the contact point with

three separate sets of errors which result in the center contact, heel

contact, and toe contact. The tooth bearing for these three contact

cases is plotted respectively on the samegraph. Assumingthe combined

Hertzian deformation to be 0.00025",which corresponds approximately to

to the case of a pair of lightly loaded gears, and_using the curvatures

of the contacting surfaces, the size and direction of the contact

ellipse are determined. The larger the radius, the bigger the ellipse.

The sliding velocity has also been plotted at selected points. See

Fig. 2-34 and Fig. 2-35.

2.4.3 Motion Graphs

The rotation errors of the driven member against the driving

member for the entire duration of contact for several adjacent meshing

pairs were plotted. The corresponding velocity errors were shown in

the same graph. Fig. 2-36 shows the curves on the drive side with a

running position which results in a center contact. Fig. 2-37 shows

the results on the coast side with the same running position. Figs.

2-38 and 2-39 illustrate the contact patterns for the motion curves

sho_ in Figs. 2-36 and 2-37.
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The velocity curves in those figures do not intersect; at the

transfer points there is a sudden jump in the velocity with which the

driving tooth strikes its mate. This value is, therefore, a measure

of the impact occurring at each tooth mesh. As mismatch is increased,

the impact increases in magnitude, resulting in noise and stress. It

is therefore essential that mismatchbe kept to the smallest value

compatible with the adjustability to the running position errors. This

concept of motion errors is only applied to the case under a very light

load. The elastic deformation due to moderate load will smoothout these

errors.
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Fig. 2-2. Sectional View in The Axial Plane For A Pair

of Spiral Bevel Gears

Fig. 2-3. Sectional View In The Transverse Plane For A Pair

of Spiral Bevel Gears
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Fig. 2-21. Wheel Surface Curvature (Pinion) in y Direction



DEesser

Axis

58

B
P

Wheel Axis

Fig. 2-22. Wheel Surface (Pinion)



59

Cradle

_g

Fig. 2-23. Position Vectors (Considering Gear Stationar_

\

12

Contact Ellipse in Tangent Plane

Tangent
Plane

\ ,
\ Plane

\
\

\
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Fig. 2-26. Typical Tooth Profile
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CHAPTER III

DYNAMICS OF SPIRAL BEVEL GEARS

3.1 Introduction

One of the main uncertainties in gear failure analysis is the

load imposed on the gear teeth at highspeeds where the inertia forces

of the gear wheel and shaft become significant. The dynamic response of

the operating system plays an important role in gear design because the

movement of the gear body will shift the contact bearing to an undesirable

position as a result of the misalignment of shaft. The dynamic load in

gearing has received continuous attention in the past, and many studies

have been reported (1-9). As far as the dynamic response of bevel gears

is concerned, most of the studies have been conducted experimentally in the

laboratory. One of the recent measurements is by Terauchi and Fujii (i0)

in which the dynamic load of gear teeth of straight bevel gears is

obtained by using a power circulating gear testing machine. There is

a lack of analytical study of the vibration of spiral bevel gears. For

instance, some industrial practice still depends upon Buckingham's formulae

or upon empirical factors for designing spiral bevel gears.

Analytical studies of spiral bevel gears are extremely complex

because: I. the tooth profile of spiral bevel gears is generated by the cutting

machine, and it is difficult to describe the tooth surface,which is much

more complicated than that of spur and helical gears; 2. the tooth contact

patterns of spiral bevel gears vary with the assembly errors caused by
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the apex error, shaft alignment, etc.; 3. being different from spur

gears, the spiral bevel gears have also lateral vibration in addition

to rotational vibration. In this report, efforts are madeto explore

the effects of all these factors on the dynamicbehavior of the spiral

bevel gears.
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3.2 Formulation

The main objective in this section is to formulate a dynamic

model and equations of motion to simulate, in the steady state, the periodic

motion of both the pinion and the gear as well as the tooth load during

a typical cycle, in which a pair of teeth traverses through the zone of

action from point A to point C as shown in Fig. 3-1.

In developing the equations of motion, the pinion and the gear were

assumed to be rigid bodies each having six degrees of freedom. The

supporting bearing was assumed flexible with known spring stiffness. At

the contact of each pair of teeth in the zone of action, the teeth were

assumed to be connected by a linear spring which is oriented normal to

the contact point and has a stiffness to be determined separately by a

finite element model.

The equations of motion of a rigid body in three dimension are

(see Fig. 3-2):

7_F=ma

(3.1)

where F : external force vector

m : mass

a : acceleration vector of the mass center

_MG : vector of external moment about the gravity center

HG : vector of rate of change of angular momentum about

the mass center
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The following derivation is described separately for pinion and gear.

3.2.1 Pinion

Let the moving coordinate axes X'p, yp,' Z'p be the principal axes

of the inertia of the body so that the axis of the rotation of the body

will direct along one of these axes, which is named the dominant axis.

The pinion shaft is not fixed in the moving coordinate, but rotates

' at an average velocity _ which is the
about the dominant axis yp p

operational rotation velocity of the shaft. XYZ axes are fixed co-

ordinates in space (see Fig. 3-1). In the case of the pinion, the

dominant axis is along the Y axis, hence the angular momentum of the

pinion about the mass center is

H--Gp= Ix,pex, pi_ + ly,p(ey,p + mp)J'p + Iz'pez'pk'p (3.2)

and the rate of change of H G in the moving coordinate

"°

-- = I e T' + I, 8 , _' + Iz,pez,pk' p (3.3)HGp x'p x'p p Y P y p p

£p@X I " __ • __x%+ _--p P P ly,p(Sy,p pe z

-- = T' + --' + ez,pk p)_p (Sx, p P By, pip
(3.4)

HGp = [Ix,pex, p - ly,p_°pSz, p + (Iz,p- ly'p)ey'pez'p] i'
p
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_I "" " 1

+ 'P + (Ix, _ ex ' n-y,pey p Iz, p) pez, p 3'p (3.5)

_I °°+ z,p8z,p + ly,p_p8 x,
+ (_,-i, )e,G, l -

P y p x p x p y pl k'
] P

8 , is the rotation velocity variation from m . The true
YP p

+ m . Assuming 8y,rotation velocity along the dominant axis is 8y,p P P

is much less than Up and the magnitude of 8x,p, 8y,p and Oz,p is of the

same order, and neglecting the higher order terms, one obtains

a linearized equation

HGp x,pSx,p ly,pmp8z, p i'P

']+ ,p r'y,pey 3p (3.6)

+ ,p + k'
. z'P ez ly' p_pex' p p

so the governing equations become

M N

Z_ + ZF
i=l rpi i=l cpi = mp (_'cpl'p+ Ycp3..'_'p + _'cp_')p (3.7)

M N

I _rpiX-- + I V x_
"= i=lI i Frpi cpi cpi

+ Input Torque

=[Ix'pSx, p - ly,pmpSz,p] i'
P (3.8)
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+ ,p + k'z,pez ly,pmpOx,p p

(3.8)

where M is number of bearing reaction force, N is number of contact

force, and X'cp' Ycp" and E'cp are the components of the absolute

acceleration of the pinion mass center in the x', y' and z' direction•

3.2•2 Gear

These results are similar to the equations for the pinion, except

that the dominant axis in the case of the gear is X axis and the operational

rotation velocity is Wg, the equations of motion for the gear are:

M N

I _ + I FLg i = mg
i=l rgi 1"=1

(3.9)

M N

YLgi x FLg i + _ YLgi x FLg i + Output Torque
.=i=l i i

--ix,gex,g] ¥'g

I .. ] -:-
+ Jg+ ly, gey, g Ix, gmgez, g

(3.10)

g6z, - Ix,gmgey, g
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Somepreliminary work must be completed before the twelve

equations in the system can be solved. These are: i) expressing the

and F in terms of the displacement unknownsin theforce terms Fri ci

fixed coordinate; 2) expressing the displacement unknowns in the

fixed coordinate by the displacement unknowns in x'y'z' system in which

the equations are solved.

Because the contact force is assumed to always be in the normal

direction of the contact point on the tooth surface, the scalar quantity of the

contact force can be used effectively in the derivation if the direction

vector of the contact point is known. For simplification, the matrix

notation is used, and some basic column matrices are introduced:

T

= ' ', ez,g) (3.11){D'}g (Xg, yg z_, 8x,g , ey,g

{D'}p = (x', ', ' TP yp Zp, ex,p, ey,p, ez,p)
(3.12)

which are the displacement unknowns in the moving coordinate system,

while

{ D}g = (Xg,yg,Zg,exg , eyg,ezg)T
(3.13)

= (x ,yp,Zp,e e )T{D }p P xp, yp'ezp
(3.14)

are the displacement components in the fixed coordinate.

From the configuration of the gear system, the displacement

components at the contact point i in the normal direction (G) can be
n
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expressed in terms of the rigid body displacements as:

{Gni}g = [DGi]g {D}g
(3.15)

{Gni}p = [DGi] p {D}p (3.16)

and the bearing reaction force at bearing j can also be expressed

in terms of rigid body displacements by:

{Frj} =-[DK ] {D} (3.17)g 3 g g

{Frj} = - [DKj]p {D} (3.18)P P

where i and j are from one to the number of contact forcesand number of

bearing$_respectively. The displacements at contact point i due to

elastic deformation along the direction of contact normal are:

{6nci}g = [DCij]g {Fcj}g
(3.19)

= {F }
{6nci}p [DCij]p c3 P

(3.20)

where i, j are from one to the total number of contact points. The

unit outward normal vector at contact point i, is denoted nci. The

positive value of Fci is taken so that contact force is acting along
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the samedirection as the outward pointing normal vector. Since only the

scalar quantity of the contact force is considered in the equation, the

relation {Fci}g = {Fci} p is always true at each contact point.

The total displacements in the normal direction, which include

both the rigid body and the elastic deformations, will be the same for

the two contacting bodies. This relation gives:

• _i}g {Gi}g) • .ncig ({ + = - ncip ({_ } + {G.} ) (3.21)Ip ip

{6nci}g + {Gi}g = - {_nci}p - {Gni} p (3.22)

= - [DC {F }[DCji]g {Fci}g + {Gni}g ji]p ci p - {Gni} p

{F } = - ([DC. ]g + [DCji]p)-l({Gni}g + {G } )ci g 3i nip
(3.23)

and

{Fci}g =- ([DCji]g + [DCji]p)-l([DGi]g{D} + [DG.] {D} )g Ip p
(3.24)

which is the equation relating the contact force and the rigid body

displacement unknowns. The displacements in different coordinate

systems can be transferred from one to another by means of the following

relations (i0),
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X v I IxVVl

Z ! _ ZlV_

(3.25)

li}Y" _ = [Ok]
/

ZVV

(3.26)

{xI {x}y, = [Ou] [Ok] y

Z v Z

(3.27)

where [Ou] is the transformation matrix for rotation in x'y'z' coordinate,

[Ok ] is the transformation matrix for rotation in xyz coordinate.

Incorporating all the above force and displacement relations

into the equations of motion for the pinion and gear and then rearranging

the matrices, one can obtain the final form of the twelve equations.

[m] + [c] + [k] =

{D'} {fl'} {D'}
p P P

{R} (3.28)

The details of matrix [m], [c] and [k] are derived in Appendix C.

After examining the equations of motion, it was found that the

fourth equation governing the rotational motion along the dominant axis
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of the gear, and the eleventh equation governing the rotational motion

along the dominant axis of the pinion can be reduced to a single equation.

The reduced equation is similar to that describing the vibratory system of

two massesconnected by a spring. In this equation, it is convenient to convert

the rotational motion into a motion along an artificial line of action.

Like the line of action in spur gears, the artificial line of action in

spiral bevel gears is defined as the effective component of _ x n to

produce the torque along the dominant axis, where y is a position vector

from the mass center to the contact point, and n is a unit normal

vector at the contact point.

The 4th and llth equations of motion are rewritten here as

I = (E x
x'g_x'g 7cgi Fcgi)x' g + (Output Torque)x,g

(3.29)

I -- (E x
y,pey,p 7cpi Fcpi)y,p + (Input Torque)y,p

(3.30)

The following new variables are introduced:

8 = RBG • 8 (3.31)
g x'g

8 = RBP • By, (3.32)P P

Letting FMA denote the magnitude of the contact force and T c

force, the equations become

be the static
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-- Fcgi) x, g "(I Ycgi x = FMA RBG

(3.33)

x Fcpi)y, p : - FMA " RBP

(3.34)

=-T • RBG
(Output Torque) x' g c

(3.35)

= T • RBP
(Input Torque)y,p c

(3.36)

RBG and RBP are treated as the radii of the effective base circle of spiral

bevel gears. Eqs. (3.29) and (3.30) become

-- RBG • FMA- Tc RBG
RBG g

(3.37)

___ • RBP= - RBP • FMA + Te
RBP P

(3.38)

Defining

Jxg RBG 2

(3.39)

and

JYP RBP 2

(3.40)

one obtains

j e
xg g

= FMA- T c

J _ =-FMA+T c
YP P

(3.41)

(3.42)



87

Introducing an equivalent massJ and a relative displacement e
Pg

J • J
x_ yp

J = j + j (3.43)
xg yp

8 = e - e (3.44)
Pg P g

the reduced equation, including damping terms, becomes

o°

J e + C e + FMA = Tc (3.45)
Pg Pg

After the relationship between the ii displacement unknowns and the

magnitude of the contact force is rewritten, the system can be reduced to

ii second order differential equations with state dependent coefficients.

These equations were solved numerically by the Runge-Kutta method. The

unknown initial conditions (Ii displacements and ii velocities) can be

iterated by taking the previous calculated values at the end of each

iteration. The criterion of the iteration is to force the equation :to

satisfy the periodic contact condition. The static displacements and

zero velocities are taken as first guessed values.

To implement the above equations, the following state coeffi-

cients are needed:

(i) The tooth contact position as a function of the relative

rigid body displacements of the two shafts,

(2) The direction of the normal vector at the contact point,

(3) The combined stiffness of the teeth at the contact point.
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The teeth contact position and the direction of the normal vector at the

contact point can be obtained from Chapter II. Becauseof the geometric

complexity of spiral bevel gears, there is no satisfactory

formula available to calculate the deformation of the tooth surface.

A finite element program, to be described in Section 3.3, was used in

this study to calculate the deformation due to a unit load applied at a

given contact point of spiral bevel gears.
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3.3 Tooth Deflection

For most gear applications, the contact ratio is greater than

one, that is, there will be more than one pair of teeth in contact

during some portion of the whole engagement. When the load is shared

by two contacts, it cannot be assumed that the load is distributed

equally among the pairs of teeth in contact because this is a statically

indeterminate case. Therefore, one must consider the tooth deflection

under the load for each pair in order to determine the load sharing

characteristics among the pairs.

Because of the complexity of the spiral bevel gear geometry,

there are no existing simplified methods for calculating the suitable

tooth deflection. In order to investigate the system response, the gear

shaft must also be included in the calculation of tooth deflection.

Some of the recent applications of finite elements in determining

tooth deflection can be found in Refs. 9 and 12, where it was shown that

more accurate results can be obtained by using the finite element method.

Most of this work dealt with two dimensional problems and did not

include the whole gear body. Fig. 3-4 shows a typical 8-node solid

element grid pattern for a gear and a pinion with three adjacent teeth

attached to the gear wheel and shaft. Fig. 3-5 shows the central

tooth and its attached ring element of the gear. Fig. 3-6 shows parts

of the gear shaft and the gear wheei. Fig. 3-7 shows the entire ring

element with three adjacent teeth of the pinion. Fig. 3-8 shows the

elements of the pinion shaft. The central tooth was subject to load to

calculate the deflection. There are 941 nodes, 562 elements for the
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gear model, and 1029nodes, 584 elements for the pinion model. Using

this grid as the input, one can readily compute the deflection _ under

a load P applied at any grid point in the tooth surface. For this

analysis, the MARC-CDCprogramwas used, the boundaries were considered

to be fixed for all the points connected to thrust bearing to eliminate

rigid body displacement, and the boundaries nodes connected to the

radial bearing was allowed to movein the direction of dominant axis.

The stiffness at grid point i is defined as

P
= -- (3.46)

KSgi 6gi

P
KS ffi-- (3.47)

pi 6 .
pl

The stiffness (KSg, KSp) of the point other than the grid point in the

tooth surface can be calculated by the interpolation method. The

details are shown in Appendix D. The combined stiffness at contact

point is expressed as

KS • KS

KS ffi g P (3.48)

KSg + KSp
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3.4 Results and Discussion

A series of solutions were obtained to simulate the dynamic

response of a set of spiral bevel gears currently being tested at NASA-

Lewis. The data for this gear set and the lubricant data are listed

in Table 3.1. Effects studied include running speed, shaft misallgnment,

and system damping. These results are presented in this section. The

dynamic response is expressed by a dynamic load factor defined as the

ratio of the maximum dynamic load along the contact path to the average

static load. This factor is plotted as a function of speed with differ-

ent damping ratios and contact ratios.

3.4.1 Dynamic Load Variation

For a constant input torque, the load on the contact point of

the two meshing teeth along the path of contact is not constant. This

load variation is mainly caused by the following factors:

i. The variation of stiffness along the contact path.

2. The transition from a single pair of contacts to a double

and from double to single.

3. The effective radius is not constant along the contact path.

Fig. 3-9 shows the variation of effective radius of pinion. Fig. 3-10

shows the variation and jump of stiffness for the transition of

contacts.

The main excitation to the gear system comes from the periodical

change in teeth stiffness due to the alternating engagement of single

and double pairs of teeth. The frequency of this excitation force,

expressed as a meshing frequency, depends on the operating speed.



92

Therefore, it dominates the resulting mode of vibration. Fig. 3-11 to

Fig. 3-14 show dynamic load variation at four different speeds in the

case of central contact, that is, when the contact path is located

centrally between the toe and the heel of the tooth.

Since there are eleven degrees of freedom in the system, eleven

resonating frequencies of the system should exist. In the low speed

region where the excitation frequency from the change of stiffness is

much lower than all resonating frequencies, the dynamic load response

along the path of contact is somewhat like static load superimposed by

an oscillatory load due to the resonating frequency of the system.

When the speed is near the resonance region (Fig. 3.11), the

dynamic load response becomes very severe (Fig. 3-12 and Fig. 3-13).

The maximum dynamic load is much higher than the static load, which is

the case when overloading occurs. Sometimes the oscillation of dynamic

load will make meshing teeth separate when the load becomes negative,

and thus generates noise and surface fatigue.

As the speed increases beyond the zone of resonating frequencies,

the dynamic load becomes smoother along the contact course, and the

value is less than the static load (if the contact ratio is above one).

The variation of dynamic load in this region is out of phase with the

change of the teeth stiffness (Fig 3-14).

3.4.2 The Effect of Shaft Misali_nment

When the assembly errors are introduced in the system, the

contact bearing shifted to either end of the tooth surface (Ii).
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Fig. 3-15 showsthe typical paths of central contact, toe contact, and

heel contact. Usually the central contact is desired because it can

tolerate more possible running position errors and avoid edge contact.

The dynamic load response of toe and heel contact_are shownin Fig.

3-16 and Fig. 3-17. The changeof the contact bearing from the center

to either edgewill also change the contact ratio of the system because

the tooth surface is not a perfect involute along the profilewise

direction and is mismatchedalong the lengthwise direction. In the

current example, the contact ratio for the toe contact is 1.26,

central contact 1.16, and heel contact 1.0. In this case, if the con-

tact bearing is movedfarther toward the heel region, there would be no

tooth contact between the time whenthe previous tooth finishes the

contact and current tooth goes into the contact zone (discontinuity

in tooth mesh). This situation would cause a very large impact force

which would generate noise and severe damageto the tooth surface.

The effect of the tooth contact ratio on dynamic response is shownlater.

3.4.3 Contact Path Variation Due to Dynamic Response

In addition to showing the contact paths due to assembly errors

in the system in Fig. 3-15, the real contact path, including the effects

of both assembly errors and running position errors induced by the

dynamic responses, is plotted in the same figure. When

this real contact path is compared with that caused by the assembly

errors and running position errors induced by the average static elastic

deformations, the deviation is found to be surprisingly small. One

explanation of this small difference might be that the displacements

change due to the dynamic oscillation are small, and they do not produce
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a large change in contact path comparedto those causedby the static

displacement only. The closeness between these two contact paths suggests

that one can use the average static elastic deformation to calculate the

contact path, which can then be used directly to solve for the dynamic load

and lubrication behavior without having to solve the dynamic load

and contact path simultaneously using an iterative technique. The

elimination of this iterative procedure greatly reduces the computation

time.

3.4.4 Effect of Speed

Once the physical conditions of a gear set are determined, the

dynamic response depends on the operating speed. For a system with one

degree of freedom, such as spur gears, the maximum dynamic load occurs

when the meshing frequency, which depends on the operating speed, is

near the system natural frequency. Some peaks in the dynamic load

are caused by the varied meshing stiffness along the contact path, and

they appear at meshing frequencies lower than the system natural fre-

quency. The dynamic load factor, defined as the ratio of maximum

dynamic load to the average static load, is plotted against the gear

speed to illustrate the effect of speed in Fig. 3-18. Since there are

eleven degrees of freedom in the spiral bevel gear system, more peaks

in the dynamic load are expected.

It is seen that the highest dynamic load appears to occur near

the natural frequencies which correspond to the mode associated with

the largest displacements in the motion along the line of action. The

frequencies marked _ in Fig. 3-18 shows the system natural frequency
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causing a larger displacement in the motion along the line of action and

the ones marked + shows the system natural frequency with a small

displacement in that motion. It is clearly shownthat the dynamic load

factor at the frequencies marked ÷ hasa peak response, and the response

at the natural frequencies marked + is not necessarily a peak.

3.4.5 Effect of Contact Ratio

The contact ratio is defined as the ratio of the time required for

one tooth to go through the whole contact zone to the time required for a

periodic meshing cycle. It is believed that the load sharing

characteristics caused by more than one tooth in contact will reduce the

static load. The variations in the dynamic load factor due to the effect

of changing con=act ratio is shown in Figs. 3-19(a) to (c). It can be

seen that the maximum dynamic load factor does not change much. However,

the contact ratio's effect is significant in high speed regions, where

the load is spread out between meshing teeth pairs. A typical dynamic

load variation with a high contact ratio along the contact path is shown

in Fig. 3-20.

3.4.6 Effect of Dampin_

Since the damping forces are usually not known in the gear system,

three arbitrary values are chosen for the damping coefficients: 2627,

4378, and 6129 N sec/m (15, 25, and 35 ib.sec/in). These values are

selected to give a range of non-dimensional damping ratios corresponding

to those commonly used in spur gears (0.1-O.2). The non-dimenslonal

damping ratios corresponding to the above damping coefficients are 0.087,
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0.14 and 0.203. The dynamic response for these damping cases can be

observed from Figs. 3-18, 3-19(a), and 3-21. It is expected that the

larger the dampingforce is, the smaller the dynamic load factor will be

in the resonance region. The large damping force will also level off the

peak of dynamic load factor in the subresonance region, and there is no

effect on the dynamic load factor due to the damping force in the

superresonance region.

3.4.7 Effect of Bearin_ Stiffness

It is well known that the hearing stiffness plays an important

part in the dynamic load response because it directly controls the static

displacements which determine the contact path. A large stiffness for

supporting bearings is sometimes desirable because it pushes all the

resonant frequencies beyond the range of the operating speeds. In Fig.

3-22, the dynamic load factor is calculated for a system with "infinite"

bearing stiffness. The contact ratio for this case is 1.16, and the

damping ratios are 0.058 and 0.14. Since the bearing stiffnesses are

infinite, only the rotational mode prevails. Three peaks are shown to

exist in Fig. 3-22; two of these are the subharmonics. These results for

infinite stiffness are compared with the results shown in Fig. 3-19(a)

for a finite stiffness of 3.5 × 10 8 N/m (2 × 10 6 ib/in.). It is seen

that the natural frequency of the rotational mode with an infinite

stiffness is increased to 290 rad./sec, from the natural frequency of 200

rad./sec, for a finite stiffness of 3.5 × 10 8 N/m.
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Fig. 3-I. Dynamic Modeling and Zone of Action of Bevel Gears.
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Fig. 3-6. Parts of Gear Shaft And Blank



102

\

Fig. 3-7. The Elements of Rim And Three Adjacent Teeth of

Pinion
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CHAPTER IV

LUBRICATION OF SPIRAL BEVEL GEARS

4.1 Introduction

One of the most important failure modes in lubricated machine

elements is scuffing, which is where local wear occurs between the

contacting elements when the lubricant fails to separate them and the

protective thin surface film breaks down due to the high temperature. In

gearing systems this failure is affected mainly by gear geometry, speed,

load, and lubrication. For many years, the methods used to predict the

surface capacity of gear systems depended on empirical formulas based on

field experience. A major drawback in the application of the empirical

methods is that they do not consider the effects of lubrication, which

has been found to be of great importance in scuffing prediction. In

recent years, the fully developed theory in elastohydrodynamic

lubrication was successfully applied to spur and helical gears (9,52).

Because of the geometric complexity of spiral bevel gears, an analysis

covering all the possible factors to evaluate the risk of scuffing in

lubricated spiral bevel gear drives has yet to be developed.

In this chapter, an analysis of the temperature and film thickness

for spiral bevel gear teeth is performed. The bulk temperature is calcu-

lated by using the 3-D finite element method combined with a prescribed

heat input. For the heavily loaded system, the limiting shear stress
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depending on temperature and pressure is used to calculate the total

heat generated over the whole contact ellipse. The average and maximum

flash temperature in this contact ellipse is obtained by making a

finite numberof stripes. Eachstripe is oriented along the direction

of sliding velocity. It is assumedthat the temperature profile along

any stripe is the sameas that of an infinitely long band heat source

(in the direction perpendicular to sliding) whosewidth is equal to the

stripe length and has the sameheat flux profile along the stripe. The

heat flux partition coefficient is calculated by assuming that the total

heat is generated in the mid-plane of the lubricant film, and that there

_no temperature jump in this plane. Hamrock-Dowson'sequation is used

to predict the film thickness betweenmatching teeth. All quantities

mentioned above, which include bulk temperature, flash temperature,

traction coefficient and film thickness, are interdependent. They

are solved as a system by an iterative method.
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4.2 Flash Temperature

During meshing,each tooth face will show a temperature increase

(flash temperature) due to the frictional heat developed at the surface

as the contact area moves along the tooth face. This temperature rise is

restricted to the instantaneous contact area and will disappear very

rapidly as soon as the area of tooth face is out of contact. Usually,

this temperature is very high and it is an important factor in gear

scuffing.

The first successful prediction of flash temperature, done

by Blok (13,14), was based on the heat conduction analysis of a

semi-infinite body with a uniformly distributed moving heat source.

J. C. Jaeger in 1942 (15) dealt with the problem of a moving source of

heat with variable heat source and variable velocity. J. F. Archard

(16) introduced a simple harmonic mean to obtain the interface temperature.

A refined solution including a local heat partition coefficient between

a pair of disks was derived by Cameron, et al. (17). More recently,

Francis (18) made a further refinement in Blok's calculation by con-

sidering a variable heat flux in the contact.

The calculation of flash temperature is based on the assumption

that the heat source passes over the surface of a semi-infinite solid.

For spiral bevel gears, the area of sliding contact is formed by elastic

deformation of curved tooth surfaces where, according to the classic

equation of Hertz (19), the area of contact is elliptical. Archard (16)

has shown that,when the dimensionless parameter vR/a > _i0.0 (where a

is the thermal diffusivity, v is the sliding velocity and R is the

nominal length), the heat flow in the direction perpendicular to sliding
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maybe neglected. The temperature distribution within a heat source

of finite area can be determined by dividing the whole contact area

into differential stripes parallel to the sliding direction. The

temperature profile along any stripe is the same as that of an in-

finitely long band heat source (in the direction perpendicular to slid-

ing) of width equal to the stripe length and having the same heat flux

profile along the stripe.

The situation is illustrated in Fig. 4-1, which shows the

contact heat flux distribution in an elliptical contact area with an

angle u between direction of the velocity of heat flux (sliding velocity)

and semi-minor axis of this area. Letting the equation (X/AMAX) 2 +

(Y/EMAX) 2 = i describe this elliptic contact, the length _ of a stripe con-

taining point (x,y) in the contact is

YA = BMAX 2 tan 2 e + AMAX (4.1)

YB = tan e BMAX 2 x..1- Yi BMAX2 tan2 e (4.2)

YC = BMAX 2 tan 2 e y2 _ 2 tan e BMAX 2 xiY i

2 AMAX 2+ BMAX 2 x. - BMAX 2
1

(4.3)

+,- - YB -+_YB 2 - YA YC

Yl = YA (4.4)

+,- ( +,-
x.l = tan % Yi - Yi ) + x.1 (4.5)
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+ (x_ - xT) 2
1 1 (4.6)

The center of this stripe is

x. -- 0.5 +1o (xi + x ) (4.7)

Yio = 0.5 (y+ + y_) (4.8)

The dimensionless parameter u is defined as

U = ±_(X - X.10)2 + (y - Yio)2 /_ (4.9)

If (x,y) is in the forward position of this stripe (upstream of the

sliding velocity), u is positive; otherwise, u is negative. The

temperature at this point can be obtained by using the equation developed

by Jaeger (15) for the temperature distribution along a stripe for a

{arger value of v£/a.

1/2f

T (x,y) 2q Ia(£-u)
= k (" _-v

(4.10)

where k is the thermal conductivity and q is a constant heat flux

(the reason for using a constant heat flux will be shown later) Cameron,

et al. (17) showed that, for a uniform source, the temperature profile

is given almost exactly for i0 < v£/a < _ by multiplying the asymptotic

(v%/a _ _) factor i + (2£/£-u)0"5[0.65 (a/v£) + 0.44 (a/v£)3/2], and

the temperature profile becomes
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l

T(x,y)
= k [ _v ) II

+

_0.5 }

[0.65(a/v£) + 0.44(a/v£) 3/2]

(4.11)

This factor _ii increase the _ximum temperature and moves it toward the

center of tR stripes as v£/a decreases. Even if v£/a < i0, which occurs

in t_ outer stripes of t_ contact ellipse, the equation can still be

used because (I) the correction factor _ii hold approximately for

v£/a < i0.0, and (2) t_ outer stripes are only a small fraction of the

area of the heat source. Thus, there _ii be a _nimal effect on the

temperature in the whole contact area.

Heat is generated by viscous shearing of the lubricant between the

slidi_ surfaces. This heat is carried away either by tR lubricant

through convection or by the gear blanks through conduction. The

relative importance between these two modes of heat transfer in EHD

contact was examined by Trachman (20). He concluded that the Rat

carried aw_ by heat convection can _ neglected in comparison to the

heat diffused to the _ar _dy, _cept at very high speeds _ich exceed

those of gears in current practice. Let tR subscripts I aM 2 denote

the pinion and the gear, respectively. The Rat generated in the contact

area is divided betwen tR pinion a_ t_ gear by the ratio a/(l - =),

where e is tR heat partition coefficient. Therefore, within the

contact, the temperature distribution in the pinion and the gear are

TI(x'Y) = 2__q.lal(£1_Ul)]0.5 I 7 2£1 ]0.5
ik1 i +

) l'_ [_l---/_ll [0"65(al/Vl£1)

+ 0.44 al/Vl£1)3/2]_ (4.12)

!
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T2(x,y) = (i-_) 2qk2 IIa2(g2-u2)_v2

+ 0.44 (a2/v2E2) 3/2 ]1

0.5

[0.65 (a2/v2_2)

(4.13)

The lubricant local velocity profile and temperature profile

for the very high sliding velocity case were estimated by Plint (21)

and later confirmed by Trachman's analysis (20). For sliding contacts,

their results showed a sharp S-shape velocity profile across the film

with a large velocity gradient at the mid-plane. The temperature is at

i_s maximum at the mid-plane and decreases almost linearly to both

surfaces. Since shearing of the lubricant occurs mainly in the mid-

plane, most of the heat is also generated in this layer. This

resul_ in a triangular temperature distribution across the film.

According to Francis' analysis (18), if the bulk surface

temperatures for the pinion and the gear, TBI and TB2 , are different

(see Fig. 4-2), then the interfacial temperature can be expressed

(_ + Aa) ITI +_oql + TBI = Tmid (x,Y)

= (l-c_-AcO IT2 + k_o ] + TB2

where As is the unknown function of (x,y)which expresses the local

deviation from heat flux distribution aq and (i - a)q, Z is the
m

distance from pinion surface to the layers at which all the shear

(4.14)
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h

is concentrated (Z = =), k is the oil thermal conductivity, and
m z o

Tmid(x,y) is the temperature at the shear plane. Then

(_ + A_) IT I
+

h2-_-i + TBI = (i- e- A u)IT2 + h2--_o]+ TB2

(4.15)

T 2 + hq/2k + -o TB2 TBI

A + A= = T I + T 2 + hq/k (4.16)
o

Tmid(x,y) =

+
T2(x,y) + hq/2k ° TB2 - TBI

Tl(X,y) + T2(x,y) + hq/k °
Tl(X,y) + h_--1 + TBI

(4.17)

The heat partition coefficient _ must now be determined to calcu-

late the flash temperature of pinion and gear. The analytical expres-

sion for e in terms of local conditionsls difficult. The best approxima-

tion of _ will be the value that satisfies the condition for which the

temperature fields of the two surfaces are identical over the contact

ellipse. Thus, an analytical approximation can be written by equating

the mean temperature of the two surfaces, as done by Jaeger (15)

a Tl,av e + + TB1 = (1 - a) T2,av e + + TB 2 (4.18)

where
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If TI (x,y) dxdy

Tl,ave _ AMAX BMAX
(4.19)

f/ T2 (x,y) dxdy
= (4.20)

T2, ave _ AMAX BMAX

Q is the total heat flux over the whole contact ellipse. Once

the _ is determined, the flash temperatures become

Tl,f(x,y) = _Tl(X,y) + TBI
(4.21)

T2,f(x,y ) = (l-a) T2(x,y) + TB2
(4.22)
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4.3 Bulk Temperature

The method mentioned in Section 4.2 is for calculating, with known

heat flux, the flash temperature rise above the surface temperature which

was assumed known beforehand. The existing criteria for scuffing of

heavily loaded gears is that the total surface temperature rises to a

critical value at which the oil film collapses, the protective surface

layer breaks and metal to metal contact occurs. Uncertainty in the bulk

surface temperature makes any scuffing prediction useless even if an

accurate calculation of flash temperature can be calculated.

Before the gear system starts to operate, all elements are at the

ambient temperature. Once the gear system starts to operate, the

temperature builds up as the gears are running due to frictional heat.

After a sufficient period, the gear surface temperatures reach a steady

state at which the heat flux flowing into the body is equal to that

flowing out of the body. At each revolution, thetooth is subject to the

same heating flux. Since the time period for each contact point in the

contact zone is only a small fraction of the entire period of revolution,

the local temperature jump (flash temperature) has completely decayed

before it enters into the contact zone at the next revolution. Thus, it

is justified to use an average heat input over the revolution to

calculate the stea_state temperature rise of the body.

The heat input is due to the heat generated at the instantaneous

contact ellipse, and the amount depends on the load and the viscous

shearing of the lubricant. The heat flux flowing out of the body is due

to the heat convection to the surrounding air and lubricant. The

relative importance of the heat transfer coefficient at different surface

areas was discussed by Patir (22) and Townsend and Akin (23) in spur gear
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systems. They also revealed the significant effect on temperature

distribution by the lubrication method. In this study, the oil jet

impingement depth is assumed to cover the whole area of contact side,

which can be obtained by using the proper pressurized oil jet. Estimated

values of the heat transfer coefficients are used on the other surface

areas to calculate the bulk temperature.

A three-dimensional finite element program is used to calculate

the temperature coefficient. The mesh of the system includes the gear

shaft, gear body and the contact tooth with one adjacent tooth on both

sides. The eight-node element is used. This model is the same as that

used for the deflection coefficient except that the boundary conditions

are different. In the temperature analysis, all the surfaces are subject

to heat convection with different heat transfer coefficients except for

the surface in the inner cylinder of the shaft, which is assumed to have

no heat convection. The inner cylinder of the gear, created for the

modeling, is very small in radius, therefore heat transfer can be

neglected for these surfaces. Since the air in the inner cylinder of the

pinion shaft is enclosed, there is no heat loss or gain in the steady

state, and the heat convection at this surface can also be neglected.

The heat transfer coefficient hj is assigned to the contacting tooth face

which is oil jet cooled. The topland and bottomland of the tooth and the

other side of the tooth surface, which are not cooled by the oil jet,

will have a heat transfer coefficient h t for air or air/oll mist. Since

only three teeth are made in the model, there is a surface region A

covering the surfaces where the teeth are taken off and the bottomland

between those teeth. The heat transfer coefficient at this region A is
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given a value of hj, which is the same as that of the surface coefficient

cooled by the oil jet. The reason is that there is an oil jet cooled

surface on each tooth and most of the heat will flow out of the tooth through

this surface (hj >> ht). All the other convective surfaces of the gear

system are given a coefficient h (Fig. 4.3). The theoretical estimated
s

values of h and h. can be found in (Refs. 24 and 25). However, the
s 3

estimated values of hs, h and h based on the experimental results arej t

used in this study (23).

Thirty nodes are created on the contacting surface. The tempera-

ture distribution on this surface is represented by TjI which is the

temperature at the grid node J due to a unit heat flux at node I. By

interpolation, the temperature at any contact point M due to a unit heat

flux at the contact point N (TCMN) can be obtained in terms of TjI. The

details of this interpolation can be found in Appendix D. Once the

contact path is located and the heat flux flowing into each body at each

contact point has been calculated, the bulk temperature at the contact

point M can be found as

MT",B = Z T!_._ QN N = I...KMAX (4.23)

where KMAX is the total number of contact points along the contact path.
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4.4 Traction Coefficient

In analyzing lubrication related failure mode in EHD contacts, the

heat generated by traction in the contact area is the main concern. In a

conventional analysis, the rheology of the lubricant is ignored and the

local shear stress in the contact area is assumed to be proportional to

the local pressure and acts in the direction opposite to the local slip.

However, recent research into the shear behavior of EHD makes it possible

to examine the role of the fluid rheology.

The magnitude of the coefficient of friction in a highly loaded

disk machine was examined by Misharin (26) at high rolling and sliding

speeds. He also gave an approximated formula for the predlctlon of the

friction coefficient based on his experimental data. But his formula did

not give realistic results at a very high or very low value of the

rolling or sliding speeds. Smith (27) presented a set of results that showed that

the friction coefficient would increase to a maximum and then decrease

as the sliding speed is increased. He pointed out that the decrease of the

friction coefficient was due to thermal and non-Newtonian effects.

The thermal effect upon the viscosity of lubricant was examined

by Crook (28,29) and by Cheng (30). Crook used a disk machine to study

rolling friction and sliding friction. He observed that the plot of

traction against slip always showed a same kind of characteristic pattern

as that which was found by Smith (27) regardless of the variation of load

and speed. He also attempted to predict the traction analytically by

simplified friction theory based on the following assumptions: The film

thickness in the contact area is uniform; the pressure distribution in the

contact area is Hertzian; the heat carried away by convection through the lubricar
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is neglected; and the temperature rise on the surface is neglected. His

method can predict a traction coefficient consistent with experimental

data in high sliding region. However,he could not explain the behavior

in low sliding region. Chengused a thermal E_Dtheory which included

energy equation and was free of all the assumptions madeby Crook.

Cheng's results, comparedwith Crook's experimental data, still showed

a big difference in friction coefficient in the low sliding region. Both

works suggested that the thermal effect alone cannot account for the

sharp reduction of the effective viscosity in the low sliding region.

A pioneering effort was madeby Dyson (31). Hestudied various

experimental data and found that the curve of traction coefficient, when

plotted against sliding speed, can be divided into three regions (Fig.

4-4). Region I is the linear region which shows the characteristic

behavior of a Newtonian fluid. Region II is the nonlinear region which

showsnonlinear variation of the traction coefficient with the shear rate, and

region III is the thermal region which is dominated by the thermal effect

on the shear stress of the lubricant. The fluid behavior in region I

is shownto be explainable on the basis of linear viscoelasticity. In

region II, the viscosity will decreasewhenthe material undergoes a

steady continuous shear with large strain. Dyson (31) and Gruber and

Litvitz (32) suggested that the nonlinear behavior of the traction curve

is due to this effect. At a high pressure, the relationship between

stress and strain for the fluid is nonlinear; several equations were

developed to describe this nonlinear behavior. Bell, Kannel and Allen

(33), Hirst and Moore (34) used a "sinh" relation, and Trachmanand Cheng

(35) used a hyperbolic model. Observing that the traction force never
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seemsto exceed one tenth of the normal load, Smith (36), Johnsonand

Cameron(37), and Plint (38) proposed that the lubricant film would fail

to retain a very high shear stress at extremely large strain rate, and

shears like a plastic solid.

More recent work on the rheological experiment was done by

Johnsonand Roberts (39). They observed that the liquid-solid transition

was occurring in EHDcontact and the transition point was dependent on

temperature and pressure. The sameobservations were madeby Johnson

and Tevaarwerk (40) and Bair and Winer (41,42). Johnson and Tevaarwerk

(43) then developed an elastic-perfect plastic solid model for the traction

drive analysis. Basedon their experimental results, most recently

Bair and Winner (44) proposed the following model to predict the lubri-

cant behavior over the whole range of visco-elastlc-plastic change.

4.4.1 Bair-Winner Model

Bair and Winner fabricated an apparatus to measure the viscosity of

thelubricant at high strain rates and a large shear stress similar to

those in an EHD contact. They found that the lubricant under high pres-

sure exhibits a classical visco-elastic behavior for small strain. For

large strain and large stress, the lubricant behaves like a material

having a limiting yield shear stress. For lubricant under a more

moderate pressure but large strain, the result is that the shear stress is

smaller and the lubricant is viscous.

From their experimental results for 5P4E Santotrac-50 at large

strain, the relationship of the dimensionless shear stress and the

dimensionless shear rate can be described reasonably well with a single
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natural log function. The dimensionless shear stress T is defined as

the actual shear stress T(P,T) divided by the limiting shear stress

TL(P,T) , and the dimensionless shear rate @ is the actual shear rate #

multiplying by the viscosity _ (P,T) and divided by the limiting shear
o

stress TL(P,T). T(P,T), rL(P,T ) and _o(P,T) are all pressure and

temperature dependent.

This natural log function can be expressed by

^ ^

= -  n(l- (4.24)

which governs the nonlinear viscous flow.

Based on the conventional Maxwell visco-elastic model, the total

shear rate of the lubricant consists of the shear rate of elastic part

(_e)_ and that of the viscous part ($v)_

A ^ ^

Y = Ye + Yv (4.25)

The elastic part can be nondimensionalized the same way as

^ Ye Uo (P'T) _(P,T) Uo(P,T) :

y = TL(P,T ) = G (p,T)._L(P,T) = T
(4.26)

where G (P,T) is the limiting elastic shear modulus at a given tempera-

ture and pressure. With the above natural log relation for the viscous

part, a modified Maxwell model is obtained:

--÷ -  n(l-

i dT _L T_!_)£n(l - (4.27)
or Y = G dt Bo _L
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In order to use this equation, three primary physical properties are

required. These include the low shear stress viscosity _o' the

limiting yield shear stress TL, and the limiting elastic shear modulus

G • Thesethree parameters are all functions of the temperature and

pressure.

In the application of the spiral bevel gears in heavy loaded

cases, the pressure in most contact ellipses is very high (i G Pa to 2

G Pa or 150,000 psi to 300,000 psi) and the slide to roll ratio is about

0.05 - 0.3. Under these severe conditions, the limiting shear stress

for most lubricants should occur in most of the contact area. For the

temperature calculation, it is safe to assumethat the uniform limiting

shear stress is applied at a given average pressure and temperature in

the contact ellipse.

= TL(Pave,Tave) (4.28)

where _L is given by experimental data.

Since experimental data for _L in the temperatures encountered i_ spiral

gears are not available, the conventional way to calculate this yield shear

stress postulated by Dyson is used:

rL = G_/4 (4.29)

where_ is called limiting shear modulus, and_ is a function of

temperature and pressure. Basedon the experimental work of Hutton (ii)

and Switch (27), Dyson proposed a relationship betweenG_, temperature

and pressure for high viscosity index mineral oils:
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1.2P
==_'_ 2.52 + 0.0133 (T - 492) - 1.45 x 104 (4.30)

where P is in psi, and T is in OR.

A subroutine was prepared to evaluate the traction based on Bait

and Winer's model. Unfortunately, for the temperatures encountered in

spiral bevel gears, the values of _0' TL and G are not available from

Bair and Winer's work.
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4.5 Film Thickness

In 1916, Martin provided the first paper about roller lubrication.

Although he failed to predict a correct film thickness by using the

assumptions of a rigid body and an incompressible isoviscous fluid, his

approach was welcomed by later investigators. The influence on the film

thickness by the pressure dependence of the viscosity in the contact area

was examined by Gatcombe (45) by using an exponential relationship and by

Hersey and Lowdenslager (46) by using parabolic viscosity-pressure

relationships. More investigations in this field were made by Cameron

(49) and by McEwen (48). These results showed that the effect of

pressure dependence on viscosity could not alone account for the

difference between prediced and observed film thickness, although it did

provide some improvement. The effects of elastic deformation and

pressure dependent viscosity were considered first by Ertel and Grubin in

1945, who initiated the study of EHD lubrication. By assuming the

deformation in the inlet region of contact zone was the same as that of

the dry Hertzian contact, they calculated the pressure and film thickness

in this region. Dowson and Higginson (19) develoPed a general formula

for minimum film thickness for line contacts which included the effects

of elastic distortion and pressure dependent viscosity. The dimension-

less form of this equation is

where

H = 1.6 G0"6 U0"7
min, £

!

G= _E

!

U = noU/E R

!

WD = W/E R

WDO'I3 (4.31)
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R is the effective radius of the roller pair, E' is the effective elastic

modulus, _o is the atmosphereviscosity of the lubricant, e is the

pressure dependentviscosity parameter, _ = no exp(_p), w is the load per

unit length, and u is the speed. The thermal effect due to sliding

was examinedby Chengand Sternlicht (50) by using numerical technique

to solve the Reynold, elastic, energy and heat transfer equations. Their

results indicated that the isothermal Dowson-Higginsonequation could

still predict a good approximation to the measuredfilm thickness if _o

was taken as the value at the bulk surface temperature of the contact

bodies.

The 'cylinder model' used in the lubrication analysis of gears

is only good at the pitch point. Actually, the effective radius and rolling

velocity are varied from point to point along the contact path. Wayne

and Rodzimovsky (51) were amongthe first investigators who examinedthe

actual contact ratio, actual involute profile, the combinedeffects of

rolling and sliding, and film thickness in the whole course of the

contact path. Unfortunately, their analysis did not include the elastic

deformation in the contact zone. Basedon the quasi-steady state assumption,

Gu (52) used the EHDlubrication theory to calculate the film thickness

of the spur gears by including the time dependent term _(ph)/_t in the

Reynolds equation. He found that this term did not have mucheffect on

the minlmumfilm thickness.

In spur gears, the contact betweenmating teeth is a line

contact extended from one end of the tooth to the other end of the tooth.

Provided that the bulk surface temperature of the gear teeth is known

beforehand, one cannot predict accurately the minimumfilm thickness by
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using the Dowson-Higginson equation. For conjugate spiral bevel gears, the

contact is still a full line from one limit to the other limit. However,

fully conjugated spiral bevel gears seldom exist in practice. The actual

spiral bevel gears are crowned in both directions (lengthwise and profile-

wise) to reduce sensitivity to the shift of contact patterns due to

misalignment. In such cases, an elliptical contact area appears between

the mating teeth under load, for which line contact solution is no longer

valid.

Hamrock and Dowson (53) evaluated numerically the analysis of an

isothermal EHD lubrication point contact. They showed that the minimum

film thickness could be related to the well-known line contact solution

by simple expression involving the ellipticity parameter (54). In this

study, Hamrock-Dowson's point contact solution will be adapted in the

elliptical contact of spiral bevel gears.

The effective situation of contact between the spiral bevel gear and

pinion can be seen in Fig. 4-5, in which there is a flat plane contact

with a body which is described by the difference between neighboring

surfaces of the gear and the pinion at the contact point. This curved body

has effective radii R and R along the principal axis x and y, respec-
x y

tively. Under a load P, the surface near the flat plane will deform

to an elliptical shape with semi-major axis AMAX and semi-minor axis

BMAX. V and V are the velocities of the pinion and gear at the contact
P g

point. The ellipticity parameter was defined as the ratio of A_L_X to

BMAX. The minimum film thickness in the contact zone was related to

Dowson-Higginson's line contact solution by the equation
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Hi n = Hmin,£(l.0 - 1.6 e-0"62k) (4.32)

where Hmin, £ : Dimensionless film thickness of Dowson-Higginson solution

and

K : Ellipticity parameter

hmin_£
Hmin'£ ffi R

x

U = V cos B
px p p

U ffiV sin 8
PY P P

U = V cos 8
gx g g

U ffiV sin 0
gY g g

Ux ffi(Upx + Ugx)/2.0

Uy-- (u + /2.0PY Ugy)

V =VUx 2 + Uy 2

The dimensional form h .
mln,_

be written as

of the minimum film thickness for a line contact can

hmin, £ ffi1.6 s0"6(noV)0"7 E'0"43/w 0"13 (4.33)

where w ffiP/2AMAX is the load per unit length and P is total load. The

viscosity no is taken at the bulk surface temperature to account for the

thermal effec_ on the film thickness.
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It is important to note that qo' P' AMAX,BMAXand V are varied

along the path of contact. V depends on the gear kinematics, and AMAX

and BMAXdepend on the gear geometry and dynamic load P. qo is strongly

dependentupon the local static surface temperature which, in turn, is

influenced by the local film thickness through frictional heating. Thus,

the film thickness and the static (bulk) surface temperature are

interdependent, and must be solved as a coupled system. The dynamic load

is assumedto be uninfluenced by the film thickness.
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4.6 Results of Lubrication Performance

The same set of gears used for the dynamic load calculations are

used here to demonstrate calculation of the lubrication performance. Results

were obtained for a range of operating conditions to determine the effect

of speed, load, lubricant viscosity, and ambient temperature on the film

thickness, bulk temperature, and flash temperature.

The sliding velocity decreases from the beginning of the contact

path where the gear tip contacts the pinion root, until the contact point

is near the pitch point where the sliding velocity becomes zero. Then the

sliding velocity increases all the way to the end of the contact path

where the pinion tip contacts the gear root. The current set of gears

has the feature that the sliding velocity at the end of the contact path

is larger than that at the beginning of the contact path; this fact

creates a situation where more heat is generated at the end of the contact

path.

Typical distributions of the bulk temperature along the contact

path are shown in Figs. 4-6 through Fig. 4-9 for various speeds.

The bulk temperature of the pinion is always larger than that of the gear

because the pinion speed is three times faster than the gear speed, and

receives more heat in a unit time than the gear does. Although the

temperature coefficients are higher near the gear tip, the maximum bulk

temperature of both gears occurs at the end of the single tooth contact

point where the maximum heat is generated. Distributions of the total

flash temperature for the same cases are plotted on Fig. 4-10 through

Fig. 4-13. The minimum flash temperature occurs at the pitch point where

the sliding velocity is zero. For the high speed case, the variation
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of dynamic load is less pronouncedalong the contact path. The rise of

flash temperature on both sides of the pitch corresponds directly to the

variation of sliding speed at the contact. The slight decrease at the

end of the contact path is attributable to the decrease in dynamic load

in this region.

Fig. 4-14 showsthe distributions of the film thickness for four

different gear speeds. No excessive variations are seen along the

contact path. A moderate peak is evident at the pitch point for the high

speed cases, and this is associated with the slight drop of bulk tempera-

ture at the pitch point. The steady rise of film thickness along the

contact path is due to the increase in the entrainment velocity. The

final uptrend of film thickness near the end of contact is again due to

the decrease in the bulk temperature.

Finally, the effects of an increase in ambient viscosity, ambient

temperature, and load on the minimumfilm thickness hmin, maximumbulk

and total flash temperatures is demonstrated in Fig. 4-15. As

expected, an increase in viscosity would improve lubrication performance

with a muchgreater film thickness and a slight drop in both bulk and

flash temperature. An increase in ambient temperature would reduce

the film thickness considerably, and an increase in load would also

reduce the film thickness due to the increase in the bulk temperature.
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CHAPTER V

CONCLUDING REMARKS

A computer solution for the dynamic load in a pair of spiral bevel

gear sets was developed by solving the equations of motion for the pinion

and gear shaft. An existing finite element code was used to calculate

the combined stiffness of the contacting pinion and gear teeth as a

function of contact position in the zone of action. In addition to

the dynamic load analysis, a computer solution was developed to

predict the bulk surface temperature, the flash temperature, and the film

thickness along the contact path. An existing finite element heat code

was used to calculate the temperature influence coefficients from

which the bulk surface temperature is calculated. Both the lubricant

film thickness and the sliding traction are calculated from the recent

findings in EHL theories.

Results were obtained for a set of experimental spiral bevel gears

currently being tested at NASA Lewis Research Center. The results of

dynamic load show that there exist numerous peaks in the variation of

dynamic load against the gear shaft speed. These fluctuations correspond

reasonably well with the critical frequencies of the system. The en-

velope of the peaks suggests that the highest dynamic load occurs some-

where near the critical frequency corresponding to the rotational mode

oscillations of the two gears.

Results of the film thickness show that its variation along the
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contact path is not large, and is caused mainly by the increase in the

entrainment velocity and the change in the bulk surface temperature. The

total flash temperature variation is controlled by the sliding velocity,

having its maximum near the end of the contact path where the transition

from double to single teeth pair mesh occurs. Effects of operating

variables on the minimum film thickness and maximum surface temperatures

along the contact path can be obtained readily with this program.

Results for the effect of change in the ambient viscosity show trends

consistent with those anticipated from existing EHL theories.
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TABLEII

GEARDATAANDLUBRICANTDATA

GearData:
Teeth
Pitch Angle
Shaft Angle
Spiral Angle
Diametral Pitch

Gear
36

71o34'

Standard Operating Conditions :
Gear RPM
Pinion RPM
Load at Pitch Point N (Ib)
Ambient Temperature °C (°F)

Geometric Dimensions: (see Fig. C-i)

DGG = 0.1658 m (6.527 in)

ROG = 0.0312 m (1.230 in)

RIG = 0.04336 m (1.707 in)

RZG = 0.1964 m (7.733 in)

DGP = 0.2515 m (9.901 in)

ROP = 0.0325 m (1.280 in)

RIP = 0.09311 m (3.6656 in)

RZP = 0.1987 m (7.824 in)

Gear Material Data:

Steel:

Density g/cm 3 (ib/in 3)

Thermal Conductivity at 311°K (i00 °F)

w/m°K (BTU/(_ec) (in) (°F)) :

Young's Modulus GP a (psi)
Poisson Ratio

Surface Convectivity _

w/m 2 OK (BTU/(sec) (in Z) (°F)) :

Oil Jet

Oil/Air Mist

Air

Lubricant Data:

Super-Refined, Napththenic, Mineral-Oil

Dynamic Viscosit_ at 311°K (IO0°F)

cp (ib-sec/in z)

Density at 311°K (100°F) g/cm 3 (ib/in3)

Thermal Conductivity at 311°K (100°F)

w/m°K (BTU/(sec) (in) (°F))

• Temperature

Viscosity-Pressure_= _o exp(_p + 8(_ - _o )) Relation

Pressure-Viscosity Coefficient

m2/MN (in2/ib)

Temperature-Viscosity Coefficient

B °n (°R)

Pinion

12

18o26 '

90 °

35 °

5.14

500O

15000

11800 (2660)

37.8 (i00)

7.81 (.282)

46.7 (.000625)

207. (30000000)

0.3

397. (0.000135)

19.8 (0.00000675)

3.97(0.00000135)

64.7 (0.00000938)

0.61(0.022)

0.125(0.00000168)

0.023(0.00016)

3890 (7000)
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Ao

A

NOMENCLATURE

(For Chapter II)

outer cone distance

vector from machine center to the point on the surface

addendum

a linear acceleration vector

B vector from wheel center to the point on the surface

b dedendum

DC distance from cradle center to cam rotation center

D

d9 e_ c

nominal wheel diameter

machine coordinate

Ed

E
m

E
r

side dresser offset

blank offset

running offset

face width

g unit vector along the gear axis

L distance along tooth axis from crossing point

Ldi inside dresser arm length
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Ldo outside dresser arm length

m.

1
velocity ratio

N, n number of teeth for gear and pinion

n unit normal vector to the cutter blade

n°

1
index interval

P unit vector along the pinion axis

Q cradle setting angle

R radius from tooth axis

R vector from crossing point to the point on the surface

Y vector from the intersection of plane containing the

cutter tips and wheelaxis to the point on the surface

Yd
side dresser radial

S vector from machine center to the intersection of plane

containing the cutter tips and the wheel axis

(s) surface expression in matrix form

T cam setting

T
0

standard cam setting

t unit vector along the direction of dressing diamond

movement

u velocity of contact point
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V linear velocity vector

v velocity of the contact point across the surface

X, Y, X Cartesian coordinate

X machine center to back

sliding base

Xdl inside diamond setting

Xdo outside diamond setting

Xgy

X
PY

Zd

gear apex withdraw

pinion apex withdraw

side dresser axial

cam guide angle

eccentric angle

r, y pitch angle for gear and pinion

Fo_Y 0 face angle for gear and pinion

root angle for gear and pinion

cam rotation

_u cam pitch radius
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wheel cutter rotation angle based on the line perpen-
dicular to the S.

ed dresser rotation angle

work rotation

radius

shaft angle

Z
Y

Z_ d

running shaft angle

dresser block angle

_d outside pressure angle

cradle rotation

_m
spiral angle

angular velocity vector

Subscripts g and p refer to gear and pinion, respectively.
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a

NOMENCLATURE

(For Chapter III)

acceleration vector

F external force vector

w

Fc tooth contact force

w

Fr bearing reaction force

FMA scalar quantity of contact force

% angular momentum about gravity center

i, j, k unit vector

I central mass moment of inertia about the principal axis

of inertia

J equivalent mass

ks combined tooth contact stiffness

m mass

% vector of external moment about gravity center

¥
c

position vector from gravity center to the tooth

contact point

L position vector from gravity center to the bearing

reaction point

RBG radius of effective base circle of gear
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RBP radius of effective base circle of pinion

Tc
static force

x, y, Z translational displacement

rotational displacement

m

relative rotational velocity of moving coordinate to

fixed coordinate

nominal shaft velocity

{ } column matrix

matrix form

[c] damping matrix

[DC] transformation matrix

[DG] transformat ion matrix

[DK] transformationmatrix

{G .}
nl

(K}

normal displacement at point

stiffness matrix

i due to rigid body motion

[m] mass matrix

{ _nci } normal displacement at point i due to tooth contact

force
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[e u]

[e k]

transformation matrix

transformation matrix

Subscripts P , g refer to pinion and gear.
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a

NOMENCLATURE

(For Chapter IV)

thermal diffusivity

AMAX length of semi-major axis of contact ellipse

BMAX length of semi-minor axis of contact ellipse

E ! effective elastic modulus

G material parameter

G
ao

limiting elastic shear modulus

h film thickness

h°

3

h
s

surface heat transfer coefficient for oil jet cooling

surface heat transfer coefficient for free convective

cooling

h
t

surface heat transfer coefficient for air/oil mist

cooling

H °

mln
dimensionless film thickness of point contact solution

dimensionless film thickness of line contact solution

solid material thermal conductivity

k
o

K

oil thermal conductivity

ellipticity parameter

length of contact stripe
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pressure

heat flux

heat flux at tooth contact point

R nominal length, effective radius

temperature

T
ave

average temperature over whole contact ellipse

TB bulk temperature

Tf flash temperature

Tmid temperature at shear plane

u, V speed

U speed parameter

v sliding velocity

W load per unit length

WD load parameter

Z
m

distance from solid surface to shear plane

heat partition coefficient, pressure dependent viscosity

parameter

" y shear rate
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Y

dimensionless shear rate (y _o/TL)

shear rate of elastic part

shear rate of viscous part

atmosphereviscosity of lubricant

low shear stress viscosity

T shear stress

T dimensionless shear stress (r/rL)

TL limiting shear stress
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APPENDIXA

SAMPLEDATAFORMACBINESETTINGS

Gear

Numberof Teeth

Pace Width

Shaft Angle

Outer ConeDistance

Addendum

Dedendum

Pitch Angle

Face Angle

Root Angle

Spiral Angle

Nominal Wheel Diameter

Machine Center to Back

Sliding Base

Blank Offset

CamSetting

Eccentric Angle

Cradle Angle

CamGuide Angle

Standard CamSetting

CamPitch Radius

Index Interval

36

O.093

0. 267

1.249

i. 276

I. 1813

0.0

-0. 016

0. 000

6.916

0.3598

i. 2116

0.0

7. O0

6.2273

ii

Pinion

Concave

1.00

i. 5708

3. 691

O. 61086

6.0

-0. 067

-0. 009

0. 041

7. 089

O. 3616

5.3354

0.0

7.00

5.9567

ii

Convex

12

0.231

0.129

0.3217

0.3895

0.2944

0.060

-0.046

-0.045

7.279

0.3604

5.4990

0.0

7.00

5.9567

ii
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APPENDIXA (continued)

Dresser Block Angle

Outside Pressure Angle

Side Dresser Radial

Outside Dresser Arm Length

Outside DiamondSetting

Inside Dresser Arm Length

Inside DiamondSetting

Side Dresser Axial

Side Dresser Offset

Gear

0. 7854

0.3490

3.113

1.0

0.0

1.0

0.223

0.0

1.00

Pinion

Concave

0.7854

0. 3490

3. 028

1.0

0.0

1.0

0. 170

0.023

0. 800

Convex

0. 3482

2. 959

1.0

0. 171

1.0

0.0

0.029

i. 200
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APPENDIXB

From the geometry of Fig. 2-10, the motion formulas for a stand-

ard camrotation c are obtained as follows:
o

_u

_o = DC + q go
u

(B-l)

An

sin _2 = sin _o + sin a + _ sin(e ° - _o ) (B-2)

= _2 - 2 (B-3)

= + _2 + _o (B-4)e2 eo

= e2 - a
(s-5)

n°

= z _ (B-6)
n

From (B-l)
d_ o nu

de DC + n
o u

Differentiating (B-2) with respect to e
0

d_ 2 d@ o An u d_o.

cos _2_-_-= cos _o_--+-f6-cos(c ° - _o)(l -h-f--_)
o o o

d_2 V- nu Anu

=-- = sec _2 L D cos _ + cos(e
d¢o de C + nu o DC + nu oo

sec _2
=N

DC + nu

(B-7)
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where N = _u cos _o + A_u c°S(eo - _o)

From (B-4) and (B-5)

d_ de2 d_2 d_o
- -i+

de de de de
O O O O

=I+N
see _2

DC+n
u

n
u

DC+q
u

=D
sec _2

DC+n
u

(B-S)

dX

where D : DC cos _2 + N and also de
o

n°

i de

n de
o

de de
d__ = d_ o = d_ o n

dX de dX de de' n io o

n N

n i D

(B-9)

The term

c = [_X2 ] used in determining the motion parameters is

derived as follows:

d2_ n i [D dN d__I
dX2 n. D 2 _ N

1

= n i D_ N_
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2 (DC+ n )
-- U

3
D cos _2ID deodN_ (B-10)

and

dN

de u
O

d_ O
sin _ _- Aq

odc u
o

AM

DC+n
u (B-If)

where

2

AM = nu sin _o + Aq DC sin(eo - _o )

dD d_2 AM

dE---_= - DC sin _2 de -- DC + q
o u

(B-12)

i

DC+n
u

[DC N tan _2 +AM) (B,12)

cos _2

D3 {N(DC N tan _2
• . + AM) - D AM} (B-13)
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APPENDIXC

The details of the mass, viscous and stiffness matrices of the

equation of motion are shown here.

MAXC

AXYZCG (I,K)

AXYZCP (I,K)

AI (J,K)

XGG, YGG, ZGG

AXG, AYG, AZG

SGP, YGP, ZGP

AXP, AYP, AZP

SYZCG (I,K)

XYZCP (I,K)

Number of contact points at each time

Normal vector of gear surface at contact point

(inward to gear body)

Normal vector of pinion surface at contact

point (outward to pinion body)

Stiffness of contact point I due to a unit

load applied at contact point K

Translational displacements of gear gravity

center

Rotational displacements of gear body

Translational displacements of pinion gravity

cent er

Rotational displacements of pinion body

Position vector from gear gravity center to

contact point K

Position vector from pinion gravity center

to contact point K

where I = i, 2, 3 indicates the component in three-dimensional axis.

J and K equal one to MAXC. Array ABG (J,I), J = I to 12, I - i to MAXC

was introduced for convenience in developing equations:

ABG (l,I) = E - AI(I,K)*AXYZCG(I,K)

K
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ABG (2,1)

ABG (3,I)

ABG (4,z)

= Z - AI(I,K)*AXYZCG(2,K)

K

= 7. - AI(I,K)*AXYZCG(3,K)

K

= F. - AI(I,K) [XYZCG(2,K)*AXYZCG(3,K)

K

- XYZCG(3 ,K)*AXYZCG (2 ,K) ]

ABG (5,1) = I - AI (I, K) [AYZCG (3, K)*AXYZCG (i, K)

K

- XYZCG (i, K)*AXYZCG (3,K) ]

ABG (6, K) = 7. - AI(I,K) [XYZCG(I,K)*AXYZCG(2,K)

K

- XYZCG (2, K)*AXYZCG (i, K) ]

ABG (7,Z)

ABC (8,Z)

ABG (9,Z)

ABG (ZO,Z)

= _.AI(I,K)*AXYZCP(I,K)

K

= I AI(I,K)*AXYZCP(2,K)

K

ffi 7.AI(I,K)*AXYZCP(3,K)

K

= Z AI(I,K)[XYZCP(2_K)*AXYZCP(3,K)

K

- XYZCP (3 ,K)*AXYZCP (2 ,K) ]

ABG (ii,z) = 7.AI (I, K) [XYZCP (3, K) *AXYZCP (i, K)
K

- XYZCP (i,K)*AXYZCP (3,K) ]

ABG (z2,z) = T.AI(I,K) [XYZCP(I,K)*AXYZCP(2,K)

K

- XYZCP (2 ,K)*AXYZCP (i ,K) ]

The summation is from K = I to K ffiKMAXC, and I = I to K_XC.

The force situation is shown in Fig. 3-1 and Fig. C-I.
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For the gear, the componentsof the contact force are

I°IoAXYZCG

i

+AXYZCG (2,1) {ABG(J, I) }T Dg

Dp_

Ikg J = I to 12

+AXYZCG (3,1) {ABG(J, I) }T Dg

Dp!

where { } denotes column matrix, = (XGG, YGG, ZGG, AXG, AYG, AZG,

XGP, YGP, ZGP, AXP, AYP, AZP) and I from one to MAXC. The damping force

at contact point I is

the force terms due to bearing reaction are

-2KXP*XGP + KXP(RIP-R2P)*AZP i
P

-2"
-KYP*YGP 3

P

-2KZP*ZGP + KZP(R2P-RIP)*AXP k
P

and the torque due to these bearing forces are

-(RIP-YGPo)KZP*ZGP-(RIP-YGPo)2KZP*AXP

+(R2P+YGP)KZP-(R2P+YGPo)KZp + AXP
P

+(RIP-YGPo)KXP*XGP-(RIP-YGpo)2KXP*AZP

=(R2P+YGPo)KXP*XGP-(R2P+YGpo)2KXP*AZP
P
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where YGPois the rigid body displacement of the pinion in the pinion

fixed coordinate.

The damping force due to the bearing is

c' *x P+ c' 7
xp azp p

+C' *YGP -r
yp 3p

+C' *ZGP + C' *AXP k
zp axp p

and the damping torque is

C" *ZGP + C" *_P "{
zp axp p

w

+C" *XGP + C" *AZP k
xp azp p

Now the coefficients of damping will be determined• Let I = i

to MAXC and introduce array CBG(j,I), J = 1 to 12 for convenience, and

define

CBG (i,I)=-AXYZCG(I,I)

CBG (2,I)=-AXYZCG(2,I)

CBG (3,1)---AXYZCG(3,1)

CBG (4, I) = - [XYZCG (2, I)*AXYZCG (3, I)-XYZCG (3, I)*AXYZCG (2, I) ]

CBG (5,I)---[XYZCG(3,I)*AXYZCG(I,I)-XYZCG(I,I)*AXYZCG(3,I)]

CBG (6, I) = - [XYZCG (1, I)*AXYZCG (2, I)-XYZCG (2, I)*AXYZCG (i, I) ]

CBG (7,I) = AXYZCP(I,I)

CBG (8,I) --AXYZCP(2,I)

CBG (9,I) = AXYZCP(3,I)

CBG (10, I) = XYZCP (2, I)*AXYZCP (3, I)-XYZCP (3, I)*AXYZCP (2, I)



190

CBG(ii, I) = XYZCP (3, I)*AXYZCP (i, I)-XYZCP (I, I)*AXYZCP (3, I)

CBG (12,1) = XYZCP(I,I)*AXYZCP(2,1)-XYZCP(2,1)*AXYZCP(I,I)

For gear, J = i to 12

C = AXYZCG(I,I) {CGB(J,I)} r C
cxg :.c

C = AXYZCG(2,1) {CBG(J,I)} T Cc
cyg

C = AXYZCG(3,1) {CBG(j,I)} T C
czg c

C !

cxg
[xYz CG (2, I)*AXYZ CG (3,I)-XYZ CG (3,I)*AXYZ CG(2,I)]

{CBG(J,I) }r C
C

C !

cyg
[xYz CG (3,I)*AXYZ CG (i,I)-XYZ CG (l,I)*AXYZ CG (3,I)]

(CBG(J,Z) }T Cc

C !

czg
[XYZCG (i, I)*AXYZCG (2, I)-XYZCG (2, I) *AXYZCG (i, I )]

{CBG(J,I) }r C
C

C' = -COG
xg

C' = -CIG - C2G
Yg

C !

azg
= CIG*(RIG-XGGo)-C2G*(R2G-XGGo)

C' = -CIG-C2G
zg

C !

ayg
= -CIG*(RIG+XGGo_+C2G*(R2G-XGGo)

C I!

zg

C I!

azg

= -(RIG+XGGo)CIG+(R2G-XGGo)C2G

= -(RIG+XGGo) 2 CIG-(R2G-XGGo) 2 C2G
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C" = (RIG+XGG o)CIG- (R2G-XGGo) C2G
Yg

C" = - (RIG+XGGo) 2 CIG- (R2G-XGG o)2C2G
ayg

For pinion, J = i to 12

Cox p = -AXYZCP(I,I){CBG(J,I)} T Cc

C = -AXYZCP(2,I)ICBG(J,I)}T--- C
cyp c

C = -AXYZCP(3,I)iCBG(J,I)}T---- C
cap c

ccxg{ i} igcyg,Dp  g}..
The torque due to this contact force is

[XYZ CG (2, I)*AXYZ CG (3, I) -XYZ CG (3, I) *AXYZ CG (2, I)]

+ [XYZCG(2,I)*AXYZCG(3,I)-XYZXG(3,I)*AXYZCG(2,I)]

+ [XYZCG(I,I)*AXYZCG(2,I)-XYZCG(2,I)*AXYZCG(I,I)]

T
{ABG (J, I)

{ABG(J,I)} T

{ABG(J,I) }T

and the damping torque is
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l'/ i -IC' -: + C' " -z + C'
3 g czgDgcxg ig cyg g

Dp Dpj

The force terms due to the bearing reaction are

-KXG + XGG i
g

-2KYG*YGG+KYG*(R±G+XGG)-KYG*(R2G-XGG) _g

m

-2KZG*ZGG-KZG* (RIG+XGG)*AYG+KZG* (R2G-XGG)*AYG k
g

The torque terms due to these bearing reactions are

-RIG+XGGo)*KZG ZGG-(RIG+XGGo)2*KZG*AYG

+R2G-XGGo)*KZG*ZGG-(R2G-XGGo) 2*KZG*AYG _g

+(RIG+XGGo)*KYG*YGG-(R2G-XGGo) 2 *KYG AZG
g

where XGGo is the rigid body displacement of gear in the gear fixed

coordinate.

The damping force is

-/
c ' * XGG z
xg g

' * ZGG + C' * AZG _-c
yg azg -g

c' * ZGG + C' * AYG
zg ayg g

and the damping torque is

c" * ZGG + C" * AYG j
zg ayg g

C" * YGG + C" * AZG k
yg ayg g
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For pinion case, the components

-AXYECP(I,I) {ABG(J,I)} T {Dg/i p
Dp

of contact force are

-AXYZCP (2, I)

-AXYZCP (3, I) {ABG(J,I)} T _D Ikp

Io:J
l=Ito

J--Ito

MAXC and

12

the damping force at contact point I is

C
cxp g ---p cyp Dg czp D

D DpP

the torque due to this contact force is

- [XYZCP (2, I)*AXYZCP (3, I)-XYZCP (3, I)*AXYZCP (2, I) {ABG (J, I) }T

[

P

Dp

- [XYZCP (3, I) *AXYZCP (I, I)-XYZCP (I, I)*AXYZCP (3, I) ]{ABG (J, I) }T

.%-

Dg 3p

- [XYZCP (i, I)*AXYZCP (2, I)-XYZCP (2, I)*AXYZCP (I, I) ]{ABG (J, I) }T

Dp
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J = i to 12 and the damping torque is

C' + C' D j +C'
cxp cyp p ezp

P

C' -- -[XYZCP(2,1)*AXYZCP(3,1)-XYZCP(3,1)*AXYZCP(2,1)]
cxp

{CBG(J,I)} T C
c

C' -- -[XYZCP(3,1)*AXYZCP(I,I)-XYZCP(I,I)*AXYZCP(3,1)]
cyp

T
{CBG(J, I)} C

c

C' -- - [XYZCP (i, I)*AXYZCP (2, I)-XYZCP (2, I)*AXYZCP (i, I) ]
czp

{CBG(J,I) }T C
c

C' = -CIP - C2P
xp

C' = CIP*(RIP-YGPo) - C2P*(R2P+YGPo)
azp

C' = -COP
YP

C' = -CIP - C2P
zp

C' = -CIP*(RIP-YGPo) + C2P*(R2P+YGPo)
axp

C" = -(RIP-YGPo)CIP + (R2P+YGPo)C2P
zp

C" = -(RIP-YGPo)2CIP-(R2P+YGpo)2C2P
axp

C" = (RIP-YGPo)CIP-(R2P+YGPo)C2P
xp

C" = -(RIP-YGpo)2CIP-(R2P+YGPo) 2C2P
azp
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/,'/I
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DGG
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GEAR

Fig. C-1. Bearing Force Configuration
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APPENDIX D

INTERPOLATION OF THE COEFFICIENTS OF DEFLECTION

AND BULK TEMPERATURE

(A) Deflection Coefficient

There are thirty nodal points in the contacting tooth surface.

The deflection coefficient D.. is the deflection (normal direction) at
13

point i due to a unit load applied at point j. The coefficient DIj was

obtained from the finite element method. Fig. D-I shows these grid points

in the axial plane and also shows the contact path. It is desired to

C at contact point I in surface element
determine the deflection D I

with four corner points jl, j2, j3 and j4, due to a unit load at this

point I. The concept of the shape function used in the finite element method

was borrowed here to solve the problem. A mapping diagram is shown in

Fig. D-2, correspondent to Fig. D-I. All the surface elements in

this mapping diagram are of the same size as the square shape. Intro-

ducing two new local coordinate variables r and s, one can obtain the

deflection at I by

C = 0.25,(l_r),(l_s),Dji,j I + 0.25,(l+r),(l_s),Dj2,J2D I

+ 0.25*(l+r)*(l+s)*Dj3,j 3 + 0.25*(l-r)*(l+s)*D74,j 4

r, s are defined as

Xj --0.25* (l-r)* (l-s)*Xjl + 0.25"(i+r)* (l-s)*Xj2

+ 0.25* (l+r)* (l+s)*Xj3 + 0.25* (l-r)* (l+s)*Xj4
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Yj = 0.25*(l-r)*(l-s)*Yjl + 0.25*(l+r)*(l-s)*Yj2

+ 0.25*(l+r)*(l+s)*Yj3 + 0.25*(l-r)*(l+s)*Yj4

which X and Y are the coordinates in the axial plane.

(B) Bulk Temperature

The temperature rise (T_) at contact point I due to a unit heat

flux at the samepoint can be calculated the sameway as that for the

deflection coefficient. If T.. is the temperature rise at nodal point i
ij

due to a unit heat flux at nodal point j, then

C = 0.25"(1- )*(l-s)*TjI,j I + 0.25*(l+r)*(l-s)*Tj2,j 2Tj

+ 0.25*(l+r)*(l+s)Tj3,j 3 + 0.25*(l-r)*(l-s)*Tj4,j 4

Now the temperature rise (T_, I) at contact point J due to a unit

heat flux at contact point I (I#J) has to be determined. If point J is

far away from point I, then the temperature rise at point J will not be

influenced by the local temperature jump at point I. Fig. D-3 shows

this situation where contact I is in surface element 8 with nodal points

If, I2, I3, I4 and contact point J is in surface element _ with nodal

point Jl, J2, J3 and J4. The temperature rise at nodal poin_ Ii, I2,

I3, and I4 due to heat flux at contact point J is

TII,J = 0.25*(l-rj)*(l-sj)*Tll,J I + 0.25*(l+rj)*(l-sj)*Tll,J 2

+ 0.25*(l+rj)*(l+sj)*Tii,J 3 + 0.25*(l-rj)*(l+sj)*Tii,J 4

where II = Ii, 12, 13 and 14, respectively, and rj, sj are local
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coordinates in surface element _.

point I will be

TI,jC = 0.25,(l_rl),(l_Sl),Tll,J

+ 0.25"(i+ri)* (l+Sl)*Tl3 ,j

Then the temperature rise at contact

+ 0.25*(l+rl)*(l-Sl)*Tl2,J

+ 0.25*(l-rl)*(l+Sl)*Tl4,J

where YI and SI are local coordinates in surface element 6.

If contact point I is close to contact point J, the local

temperature effect should be counted. Onecan makea square with the

samesize as any other squares so that the contact point I will be

within this square and contact point J will becomeone of the four corner

points of this square (see Fig. D-4). Then the temperature at each

corner point due to heat flux at point J can be determined as above.

Let r I and sI be the local coordinates in the new surface element, then

TI,jC = 0.25,(l_rl),(l_Sl),T J + 0.25,(l+rl),(l_Sl),T I

+ 0.25*(l+rl)*(l+Sl)*T 2 + 0.25*(l-rl)*(l+Sl)*T 3

the order of Tj, TI, T2 and T3 will be changed, depending on how this

new element is formed. In order to cover all the possible cases where

this new element may locate, a new element layer was created to surround

the original mapping diagram (as shown in Fig. D-4). The temperature at

these new added grid points due to heat flux at any possible grid point

was given artificially.
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